
Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- Next exam on ΔG, Macronutrients, Kinetics and Smog one week from Thursday.
- Quiz on Wednesday will go through section 14.3
- Pizza with Professors:

Review

- Reaction Rates
 - Write rate using derivative notation (Example A + 2B --> C):

R = -d[A]/dt = -(1/2)d[B]/dt = d[C]/dt.

- Rate laws of form: $R = -d[A]/dt = k[A]^a[B]^b[C]^c...$
- Simple exponents (2, 1, 0, -1, -2) can easily be determined from initial rate data.
 - Rate doubles on doubling a species exponent = 1
 - Rate halves on doubling a species exponent = -1
 - Rate quadruples on doubling a species exponent = 2
 - Rate unchanged on doubling a species exponent = 0

Simple Integrated Rate Laws for $-d[A]/dt = k_{app}[A]^a$ • 0^{th} order a = 0: $[A]_{t} = [A]_{0} - k_{app}t$ [A] • 1^{st} order a = 1: $[A]_{t} = [A]_{o} exp\{-k_{app}t\}$ - Linear: $ln[A]_{t} = ln[A]_{o} - k_{abb}t$ In[A] • 2nd order a = 2: $1/[A]_t = 1/[A]_0 + kt$ - Alternate form: $[A] = \frac{[A]_0}{[A]_0 kt + 1}$ t 1/[A]

t

Review Initial Rate Data for RXN: A + B + C --> X

(d[X]/dt) _o	[A] _o	[B] _o	
1.0 M/s	10.0	10.0	0.01
4.0 M/s	10.0	10.0	0.02
16.0 M/s	10.0	10.0	0.04
2.0 M/s	20.0	10.0	0.01
4.0 M/s	40.0	10.0	0.01
1.0 M/s	10.0	100.0	0.01

- Pseudo-order (Swamping) method
- Consider A + B ---> C, R = k[A]^a[B]^b
- Use large excess of all but one reactant, so concentration of only the limiting reactant (A) changes significantly.
 - Mathematically: $[B]_t \approx [B]_o$ which is constant.
 - $\mathsf{R} = -\mathsf{d}[\mathsf{A}]/\mathsf{dt} = (\mathsf{k}[\mathsf{B}]_{o}^{b})[\mathsf{A}]^{a} \approx \mathsf{k}_{app}[\mathsf{A}]^{a}$
 - For a = 0, 1, 2 easily integrated to get a function for [A]_t
 - If a ≠ integer: $lnR = lnk_{app} + a \cdot ln[A]_{t}$, which is a line with slope = a.