Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- One person left to get e-mail list working: B. Jeffrey
- All review material including review notes on class site.
- First exam in class Thursday.
 - Do not enter class room until I let you in.
 - Bring yourself, calculator, pencils and possibly something to drink.
 - Stop at the bathroom before class.
 - No cell phones, PDAs, etc...
- Will be starting next section next Tuesday.

- Alcohols have C-O-H functional group. Named by replacing "e" at end of alkane name with "ol".
- Ethers contain C-O-C functional group, Name by placing the names of the two alkyl groups in alphabetical order before the word ether.
- Carbohydrates C_x(H₂O)_y
 - Monosaccharides contain -OH, and C=O groups.
 - Keto- (ketone) vs. aldo- (aldehyde) sugars.
 - Cyclization reaction (α vs. β forms).
 - Polysaccharides
 - Condensation reaction
 - Starch(α linkage) vs. cellulose (β linkage)

Review Continued

- Biomass fuels (primarily CH₃CH₂OH and CH₄ produced by bacteria)
 - Amines R₃N are precursors (R = hydrocarbon or H)
 - Carboxylic acids -C(=O)-OH are precursors
 - Acidic because -COO ion is stabilized by resonance.
 - CH₃COOH is acetic acid.
 - The ethanol and methane are by-products of metabolic processes from which the bacteria get energy. This means the biomass fuels USUALLY HAVE LESS ENERGY CONTENT THEN WHAT THEY ARE DERIVED FROM.

Coal

Old biomass fuel:

- partially decayed biomass exposed to heat and pressure but NO oxygen.
- O & H driven off over time leaving a C rich material.

Figure of one chemical structure for Coal in Fossil Fuel Handout.

Alkene C=C double bonds

Naming Alkenes

- Replace -ane in the backbone name with -ene and precede the backbone name with # indicating location of double bond.
- Branch names & #'s + # for double bond position + root for backbone length + ene.
- CH₃CH=CH₂ is 1-propene or just propene.
- CH₃CH=CHCH₃ is 2-butene
- Don't forget about cis- and trans-

Alkynes
C=C
triple
bonds

Naming Alkynes

- Replace -ane in the backbone name with -yne and precede the backbone name with a number indicating the position of the triple bond.
- Branch names & #'s + # for triple bond position
 + root for backbone length + yne.
- CH₃-C≡C-CH₃ is 2-butyne
- (CH₃)₂CH₂-C≡CH is 3-methyl-1-butyne

- Thermochemistry = study of energy in chemical reactions.
- Exothermic processes release heat (lower chemical potential energy of the system)
- Endothermic processes absorb heat (raise the chemical potential energy of the system)
- Rates (kinetics) will be determined by what happens in the middle of a reaction process. (RXN path energy diagrams).

- Thermodynamic System= Everything we are interested in.
 In chemistry, at minimum, this contains all reactants and
 products. First law of thermodynamics ∆E=q+w, energy is
 conserved.
- Pressure volume work: $w = -P\Delta V$. Take care with sign (work done on surroundings or by system is negative, work done on system is positive.)
- Enthalpy (ΔH) is easier to keep track of because under constant P conditions $\Delta H = q$ (or sometimes q_p , to indicate constant pressure).
- $q = C_p \Delta T$, $C_p = constant$ pressure heat capacity of sample $(C_p = nc_p, c_p = molar$ heat capacity or $C_p = ms$, m = mass, s = specific heat).
- For phase change $q = n\Delta H_{phase change}$ (either "fus" or "vap")

- Calorimetry
 - Key relationship: $0 = \Delta H_{RXN} + C\Delta T => \Delta H_{RXN} = C\Delta T$
- Bond energies to calculate ∆H_{RXN}
 - Breaking bonds requires putting energy in (+)
 (Don't forget to multiply # bonds in molecule by stoichiometric coefficients)
 - Making bonds releases energy (-) (Remember stoichiometric coefficients)
 - $\Delta H_{RXN} = \Delta H_{break} + \Delta H_{make}$
- ΔH_{f}^{o} to calculate ΔH_{RXN}
 - Key relationship: $\Delta H^{o}_{RXN} = \sum \Delta H^{o}_{f}(prod) \sum \Delta H^{o}_{f}(react)$

- ΔH_{f}^{o} to calculate ΔH_{RXN}
 - Key relationship: $\Delta H^{O}_{RXN} = \sum \Delta H^{O}_{f}(prod) \sum \Delta H^{O}_{f}(react)$
- Turning ΔH_{RXN} into molar ΔH_{RXN} .
- Fuel values = kJ/g (get by dividing molar ΔH_{RXN} by molar mass)-also kJ/mL.
- CO₂ efficiency (contribution to greenhouse effect)
 - quantified by kJ/mol CO₂ released
 - Sometimes see intensity = mol CO₂/kJ.
- Hess's law:

$$-\Delta H_{RXN} (A --> C) = \Delta H_{RXN} (A --> B) + \Delta H_{RXN} (B --> C)$$

- Petroleum is separated (refined) by fractional distillation.
 - Raoult's law $P_{tot} = X_1 P_1^0 + X_2 P_2^0 + ...$ used to show how distillation works.
 - Branched alkanes are harder to ignite (higher octane)
 - cycloalkanes (other than 5 membered are puckered to maintain 109° sp³ bond angles)
 - aromatic compounds (resonance = delocalization of π electrons = greater stability)
- Oxygenates also added to gasoline (alcohols and ethers).

Nomenclature Review

- N-alkanes with >10 C: greek prefix for (#C-10) + decane
- Cycloalkanes: cyclo + prefix for # of C + ane
- Branched Alkanes:
 - 1)Find the longest chain (backbone).
 - 2)Find the largest side group and number the backbone from the end nearest this side chain.
 - 3)Use the numbers to indicate the positions of the side groups.
 - 4) Alphabetize the side groups.
- Same naming rules for alkenes and alkynes except that the ending is -ene or -yne and a number indicating the position of the multiple bond precedes the backbone name.

- Alcohols have C-O-H functional group. Named by replacing "e" at end of alkane name with "ol".
- Ethers contain C-O-C functional group, Name by placing the names of the two alkyl groups in alphabetical order before the word ether.
- Carbohydrates C_x(H₂O)_y
 - Monosaccharides contain -OH, and C=O groups.
 - Keto- (ketone) vs. aldo- (aldehyde) sugars.
 - Cyclization reaction (α vs. β forms).
 - Polysaccharides
 - Condensation reaction
 - Starch(α linkage) vs. cellulose (β linkage)

Review Continued

- Biomass fuels (primarily CH₃CH₂OH and CH₄ produced by bacteria)
 - Carboxylic acids -C(=O)-OH are precursors
 - Acidic because -COO ion is stabilized by resonance.
 - CH₃COOH is acetic acid.
 - Amines R₃N are also precursors (R = hydrocarbon or H)
 - The ethanol and methane are by-products of metabolic processes from which the bacteria get energy. This means the biomass fuels USUALLY HAVE LESS ENERGY CONTENT THEN WHAT THEY ARE DERIVED FROM.
- Coal is old biomass fuel converted by heat and pressure under low oxygen conditions to mostly C.