Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- Some still need to sign up for e-mail list. You are required to do it to pass the course.
- Some private tutors are now available. I have posted contact info on class web site.
- Quiz tomorrow includes: ΔH_{RXN} from bond energies & ΔH_{f}° , comparison of fuels (fuel values), Hess's Law calculations, from today's lecture petroleum refining and naming of branched alkanes.
- First Exam on first two sections one week from Thursday. I will post a sample exam and its answer key in the near future.
 - Still need to sign up for e-mail list: Adam,Jason R.; Aguirre,Deseray E.; Borgwardt,Amanda M.; Chang,Vang H.; Conti,Alyssa L.; Ebben,Louise E; Ignaczak,Theresa S.; Jeffrey,Brad M.; Koepke,Jacqueline L.; Larson,Charlee R.; Marshall,Melissa C.; Mueller,Peter S.; Parker,Jennifer M; Robson Domin,Ashley J.; Tilque,Kayla L.; Vorpahl,Kyle A

Review

• ΔH^{o}_{f} to calculate ΔH_{RXN}

- Key relationship: $\Delta H^{o}_{RXN} = \sum \Delta H^{o}_{f}(prod) - \sum \Delta H^{o}_{f}(react)$

- Turning ΔH_{RXN} into molar ΔH_{RXN} .
- Fuel values = kJ/g (get by dividing molar ∆H_{RXN} by molar mass)-also kJ/mL.
- CO₂ efficiency (contribution to greenhouse effect)
 - quantified by kJ/mol CO₂ released
 - Sometimes see intensity = mol CO_2/kJ .
- Hess's law:

 $- \Delta \mathsf{H}_{\mathsf{RXN}} (\mathsf{A} \dashrightarrow \mathsf{C}) = \Delta \mathsf{H}_{\mathsf{RXN}} (\mathsf{A} \dashrightarrow \mathsf{B}) + \Delta \mathsf{H}_{\mathsf{RXN}} (\mathsf{B} \dashrightarrow \mathsf{C})$

Energy and Organic Chemistry

- Petroleum Refining (Raoult's Law 13.6)
- Gasoline (isomerism, octane rating, nomenclature)
- Aromatic Hydrocarbons
- Reformulated Gasoline (alcohols and ethers)
- Carbohydrates (sugars, starch, cellulose, condensation RXNs).
- Biomass fuels (carboxylic acids and amines)
- Coal
- Review of Hydrogen as fuel
- Alkenes and Alkynes

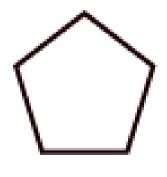
Fossil Fuels Handout Figure 1.

Naming "Normal" Alkanes (>10)

Named systematically using Greek prefixes:

Greek Prefix for (#C-10) + decane

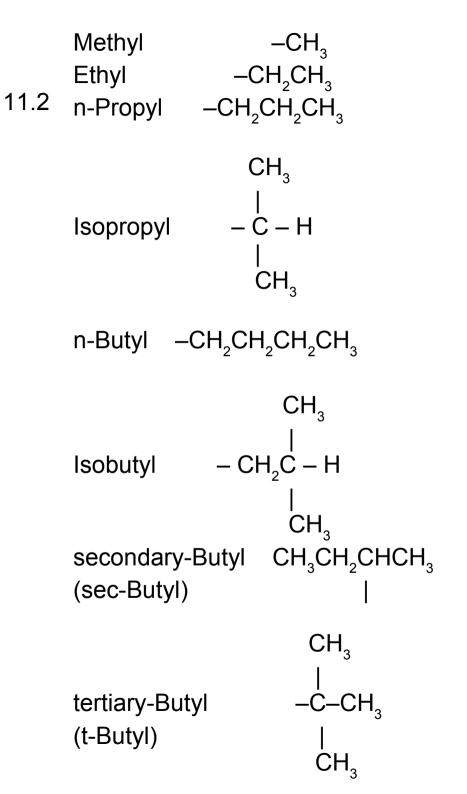
# C -10	Prefix		
1	Un-		
2	Do-		
3	Tri-		
4	Tetra-		
5	Penta-		
6	Hexa-		
7	Hepta- Octa-		
8	Octa-		
9	Nona-		


•20 carbon chain is called eicosane

Cycloalkanes

- Named as cyclo + prefix for # of C + ane
- Formula: C_nH_{2n}

	normal (n-alkane) Bp	cycloalkane Bp
pentane	36.1 °C	49.3 °C
hexane	68.8 °C	80.8 °C



Cyclopentane

Naming Branched Alkanes 1)Find the longest chain (backbone).

- 2)Find the largest side group and number the backbone from the end nearest this side chain.
- 3)Use the numbers to indicate the positions of the side groups.
- 4)Alphabetize the side groups.

Fuel Values

Compound	Combustion Eq	Molar ∆H (kJ/mol)	Molar Mass (g)	Fuel Value (kJ/g)
CH_4 (Methane)	$CH_4(g) + 2O_2(g)> CO_2(g) + 2H_2O(g)$	-802.3	16.04	50.02
$C_{2}H_{6}$ (Ethane)	$2CH_{3}CH_{3}(g) + 7O_{2}(g)> 4CO_{2}(g) + 6H_{2}O(g)$	-1428	30.07	47.49
$C_{2}H_{6}O$ (Ethanol)	$CH_3CH_2OH(I) + 3O_2(g)> 2CO_2(g) + 3H_2O(g)$	9 -1234.8	46.07	26.8
C ₈ H ₁₈ (Octane)	$2C_8H_{18}(I) + 25O_2(g)> 16CO_2(g) + 18H_2O(g)$	g -4678	114.23	40.95
$C_{6}H_{12}O_{6}$ (glucose)	$C_{6}H_{12}O_{6}(s) + 6O_{2}(g)> 6CO_{2}(g) + 6H_{2}O(g)$	-2537	180.16	14.08
H ₂	$2H_2(g) + O_2(g)> 2H_2O(g)$	-241.8	2.02	120

Alcohols and Ethers

- Alcohols (C-O-H)
 - Name by replacing
 -ane of the
 corresponding alkane
 with -ol.
- Examples:
 - $CH_3OH = methanol$
 - $CH_{3}CH_{2}CH_{2}OH = propanol$

- Ethers (C-O-C)
 - Name by placing the names of the two alkyl groups in alphabetical order before the word ether.
 - Ignore the prefixes tert-, iso- and sec-.
- Examples
 - tert-butyl methyl ether
 - $-(CH_3)_3COCH_3$