Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).
- Section 16.4 was left out of the reading assignment. Please read.
- Quiz tomorrow on material since last quiz through concepts of pH and conjugate acidbase pairs today.
- You will not be asked about making buffers yet.

Review

- Quadratic in solving equilibria
- Relation between K and ΔG - K = exp(- $\Delta G^{\circ}/(RT)$)
 - $-\Delta G^{\circ} = -RTInK$
- Le Châtelier's principle:
 - If a system at equilibrium is subjected to a stress, the position of the equilibrium will shift in the direction that will relieve that stress.
 - Examples: effect of changes of concentration, pressure and temperature.
 - Catalysts have no effect since they do not change ΔG° .
- Heterogeneous equilibria: pure solids and solvents do not appear in mass action expression.

Review

- Acid-Base equilibria.
 - Strong acids: HNO_3 , HCI and first proton on H_2SO_4 dissociate completely when mixed with water.
 - For weak acids HA <—> H^+ + A^- does not go 100%.
 - $K_a = [H^+][A^-]/[HA]$ is tabulated for many of these.
 - Can use K_a in normal equilibrium calculations.
- Important acid-base equilibrium situation is buffers.
 - Buffer = a solution that resists having its pH changed when acid or base is added.
 - Made by mixing a weak acid and a salt containing the same negative ion.

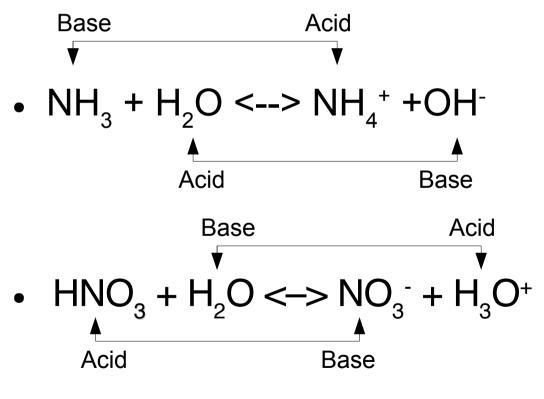
Review

- $pH=-log_{10}[H^+]$, generally $pX = -log_{10}X$, $10^{-pX} = X$
- Showed that when the [acid] and [salt] in a buffer are near 1.0 M we can use the Henderson-Hasselbach equation to estimate pH = pK_a + log[salt]/[acid]. The [..] are assumed to be the initial values.
 - When making a buffer pick $pK_a \approx desired pH$.
 - Solve $pH = pK_a + log[salt]/[acid]$ for ratio [salt]/[acid].
 - For ratio < 1 set minimum [salt]•(L sol'n) > # moles of acid to buffer.
 - For ratio > 1 set minimum [acid]•(L sol'n) > # moles of base to buffer.

Acid-Base & Solution Equilibria

- Brønsted-Lowry vs Lewis acids and Bases
- Conjugate pairs
- Equilibria and Bases
- Example equilibria Acid Rain
- Structure-acidity relations
- pH and pOH
- pH of salt solutions--why New England lakes are acidic.
- How Buffers work
- Indicators
- Titration
- solubilities of solids (K_{sp})
- Complex ions

Brønsted-Lowry Model


- acid = a proton donor
 base = a proton acceptor
- $HNO_3(aq) + H_2O(aq) < > NO_3^-(aq) + H_3O^+(aq)$ acid base
- Na⁺(aq) +OH⁻(aq) + H₂O(aq) <-> Na⁺(aq)+ H₂O(aq)+ OH⁻(aq) base acid

Lewis Model (does not require water)

- acid = electron pair acceptor
 base = electron pair donor
- H₃P: + Cu²⁺ <---> H₃P---Cu²⁺
 base acid coordinate covalent bond
- H₃N: + H–O–H <—> H₃N--H⁺ + OH⁻
 base acid

Conjugate Acid-Base Pairs

 Acids and bases which interconvert during an acid base reaction.

Chang Table 16.2

Bisulfate Equilibrium

 $\begin{array}{l} H_2 SO_4(aq) < \longrightarrow H^+(aq) + HSO_4^-(aq) \ \ K_{a1} >> 1 \ like \ HNO_3 \\ HSO_4^-(aq) < \longrightarrow H^+(aq) + SO_4^{-2}(aq) \ \ K_{a2} = 1.2 \ x \ 10^{-2} \end{array}$

Assume: $[H_2SO_4]_i = 0.050 \text{ M}$ $HSO_4^-(aq) < \longrightarrow H^+(aq) + SO_4^{-2}(aq)$ $i \quad 0.050 \qquad 0.050 \qquad 0$ $\Delta \quad -x \qquad +x \qquad +x$ $eq \quad 0.050-x \qquad 0.050 + x \qquad +x$

 $=>1.2 \times 10^{-2} = (0.050 + x)x/(0.050 - x)$

solve using quadratic: x = 0.0085 or -0.071(not possible). So $[H^+] = 0.050 + 0.0085 = 0.059$ M $[HSO_4^-] = 0.050 - x = 0.041$ M pH = -log[0.059] = 1.23

Carbonic Acid & Bicarbonate Equilibrium

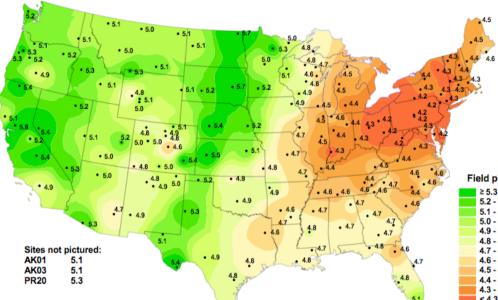
	H ₂ CO ₃ (aq) <>	H⁺(aq)	+	HCO ₃ ⁻(aq)	K _{a1} =4.3 x 10 ⁻⁷
i	1.3 x 10⁻⁵	0		0	
Δ	-X	+x		+χ	
eq	1.3 x 10⁻⁵ - x	Х		х	

4.3 x
$$10^{-7} = x^2/(1.3 \times 10^{-5} - x)$$

x² = 5.59e-12 - 4.3e-7x => x² + 4.3e-7x -5.59e-12 = 0
[HCO₃⁻] = [H₊] = x = (-4.3e-7/2)±(1/2)sqrt(4.3e-7² -4(-5.59e-12))
= 2.2e-6 or -~~2.6e-6~~.
Second equilibrium: HCO₃⁻(aq) <---> H⁺(aq) + CO₃²⁻(aq)
K_{a2} = 4.7 x 10⁻¹¹

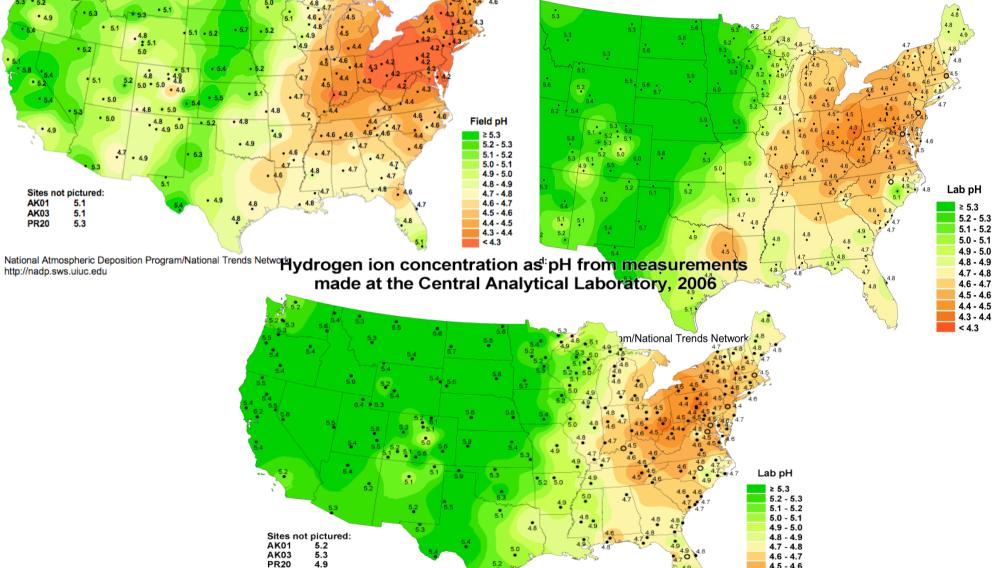
Carbonic Acid & Bicarbonate Equilibrium Second Equilibrium

 $CO_{3^{2}}(aq)$ $K_{22} = 4.7 \times 10^{-11}$ $HCO_{3}(aq) < H^{+}(aq) +$ 2.2e-6 2.2e-6 0 +X**+**X -X 2.2e-6+ x x 2.2e-6 - x eq


 $x(2.2e-6+x)/(2.2e-6-x) = 4.7x \ 10^{-11}$

Λ

- Try approx: $x(2.2e-6)/(2.2e-6) = x \approx 4.7 \times 10^{-11} <<< 2.2 \times 10^{-6}$ => it won't change the concentrations appreciably => we're done. (If x were not so small we would have to iterate)
 - You are not expected to iterate, but must show that second step change is small enough that you do not need to.


Acid Rain 1994-2006

Hydrogen ion concentration as pH from measurements made at the field laboratories, 1994

http://nadp.sws.uiuc.edu

en ion concentration as pH from measurements de at the Central Analytical Laboratory, 2005

4.4 - 4.5 4.3 - 4.4 < 4.3

National Atmospheric Deposition Program/National Trends Network http://nadp.sws.uiuc.edu

Sites not pictured:

5.2

5.3

4.9

4.8

AK01

AK03

PR20

VI01