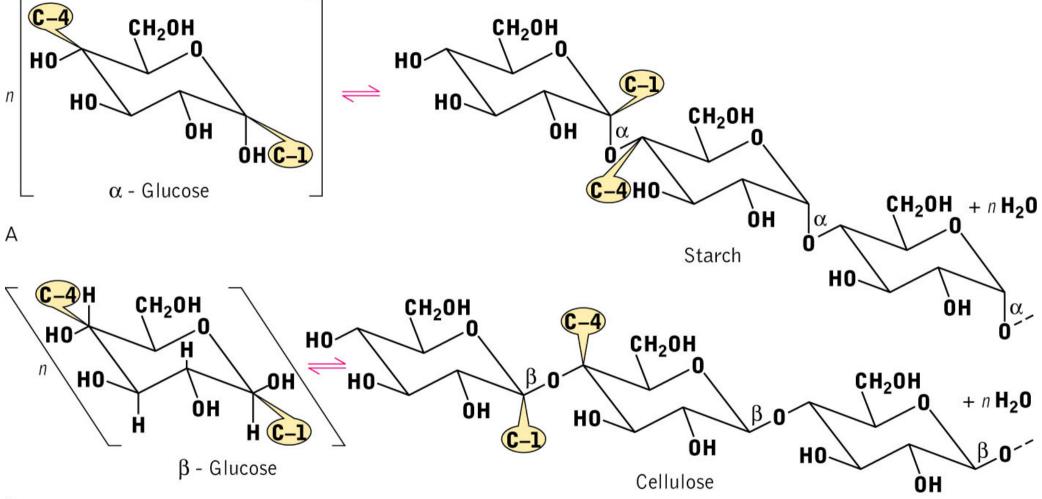
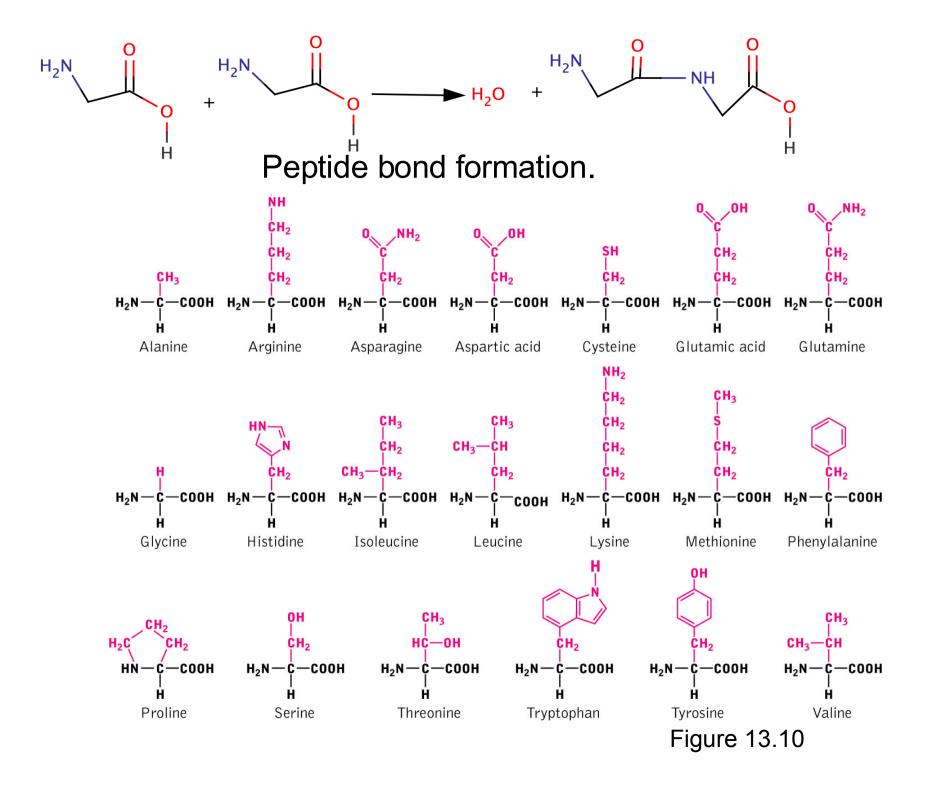

Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).
- Last Exam Thursday.
- Review in discussion tomorrow.
- Don't forget to check out of lab and get your artwork, lab notebook and goggles.
- Get enough sleep this week.


- Al forms a dense protective oxide that prevents deterioration of the underlying metal.
- Ceramics = a compound or mixture of compounds that have been transformed by heating.
 - Most commonly made from kaolinite clays
 - Usually hard and heat resistant
- Semiconductors = materials that conduct electricity poorly.
 - Cónductivity increases with increasing temperature.
 - Properties changed by doping (introducing small amounts of impurities, p-type vs. n-type doping)
 - Explanatation = Band theory

- In metals band gap \approx 0, so electrons in conduction band.
- In insulators (most ceramics, glass, etc.) band gap is large.
- In semiconductors band gap is small enough that thermal energy can excite electrons into the conduction band.


17_18.jpg

Cellulose and Starch

В

Fig. 12.18

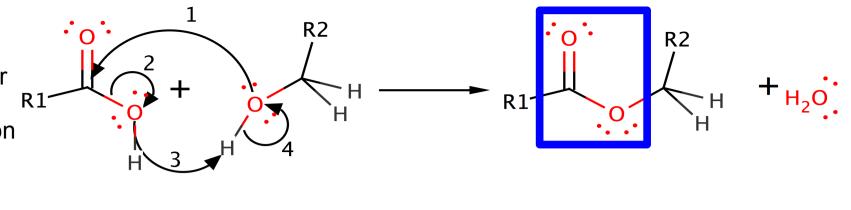
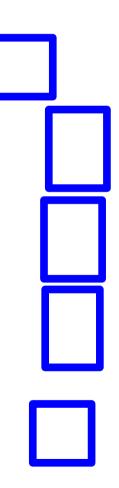
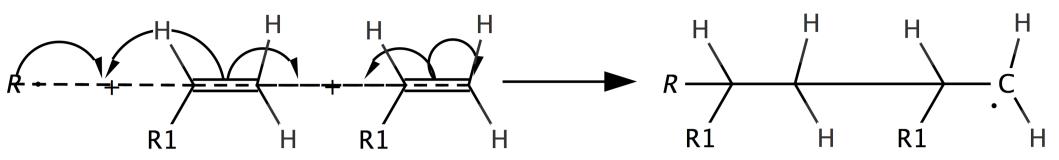

Silk

Fig. 18.18


Wool


Fig 18.19

The reaction at right is catalyzed by H+ (left out for clarity). Arrows represent electron pairs forming bonds or bonds forming electron pairs.

- Condensation polymers release H₂O while forming.
- HO– or H₂N– can be the source of the linking atom and one of the hydrogens used to form the water.
- Look for the boxed linkages to recognize condensation polymers.

In above cartoon arrow represent motions of single electrons.

- Addition polymerization releases no by products.
- Radical (unpaired electron) propagates down the chain
- Look for polymers with no amide or ester linkages, just C–C bonds.

Table 18.2

- Voltaic Cells
- Assigning Oxidation #'s (oxidation states)
- Redox Reactions and Balancing them.
- Energetics of Redox Reactions $\Delta G = -nFE$
- Standard half-cell reduction potentials

$$-E^{\circ}_{cell} = E^{\circ}_{red} + E^{\circ}_{oxid}$$
$$-E^{\circ}_{cell} = E^{\circ}_{cath} - E^{\circ}_{anode}$$
$$-E^{\circ}_{cell} = |E^{\circ}_{1} - E^{\circ}_{2}|$$

 Concentration dependence of cell potential (Nernst equation)

•

$$E_{cell} = E_{cell}^o - \frac{RT}{nF} \ln Q$$

- to calculate E_{cell} . at $25 \, ^{\circ}C \, E_{cell} = E_{cell}^{\circ} \frac{0.0592}{n} \log Q$
- K_{eq} can be calculated given E_{cell}° because Q = K_{eq} when E_{cell}° =0.
- Total energy capacity of batteries in terms of moles (or grams) of reagent available.

- Total energy capacity of batteries in terms of moles (or grams) of reagent available or used versus coulombs (charge) passed or amp-hours.
- Electrolysis and recharging batteries.
 - Any pair of reactions where $|E_1 E_2|$ less than $V_{applied}$ can go.
 - RXN with highest E^o_{red} in a pair will go in reverse as an oxidation.
 - Pair with the smallest potential difference is the most likely.
 - RXNs that use species(reactants) in low concentration are not very likely.
 - Reduction of alkali metal ions (K⁺, Na⁺, etc) to metal is unlikely since the metals reoxidize with water to form M⁺ + OH⁻ + H₂(g)
 - RXNs that produce gases have an overpotential, so go very slowly without a significantly larger potential difference than the one expected from reduction potentials.
- Fuel cells and low emission vehicles.

Metals

- Physical properties –Work hardening
- Electronegativities
- Refining/Smelting (oxidize to oxide then reduce with CO)
- Al processing
 - Separate from ore with NaOH
 - Acidify and heat to get Al₂O₃
 - Electrolytically reduce dissolved in molten cryolite (Na₃AIF₆)
- Alloying
 - Usually makes metal harder
 - Substitutional versus Interstitial Alloys
 - Can reduce corrosion (Ni and Cr w/Fe)

- Al forms a dense protective oxide that prevents deterioration of the underlying metal.
- Ceramics = a compound or mixture of compounds that have been transformed by heating.
 - Most commonly made from kaolinite clays
 - Usually hard and heat resistant
- Semiconductors = materials that conduct electricity poorly.
 - Cónductivity increases with increasing temperature.
 - Properties changed by doping (introducing small amounts of impurities, p-type vs. n-type doping)
 - Explanatation = Band theory