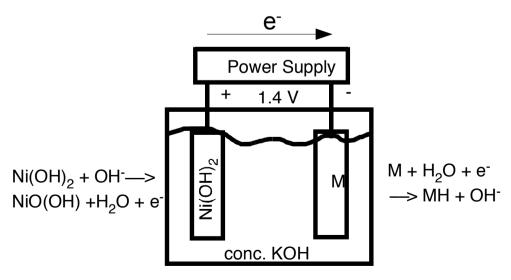
Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).
- Starting Chapter 18 today. This is the last chapter of the semester.
- Quiz tomorrow will cover chapter 17 material not on previous quiz and the beginning of chapter 18.
- Wear clothes you do not care about to lab this week.


Review

- Total energy capacity of batteries in terms of moles (or grams) of reagent available or used versus coulombs (charge) passed or amp-hours.
- Electrolysis and recharging batteries.
 - Any pair of reactions where $|E_1-E_2|$ less than $V_{applied}$ can go.
 - RXN with highest E^o_{red} in a pair will go in reverse as an oxidation.
 - Pair with the smallest potential difference is the most likely.
 - RXNs that use species(reactants) in low concentration are not very likely.
 - Reduction of alkali metal ions (K⁺, Na⁺, etc) to metal is unlikely since the metals reoxidize with water to form M⁺ + OH⁻ + H₂(g)
 - RXNs that produce gases have an overpotential, so go very slowly without a significantly larger potential difference than the one expected from reduction potentials.
- Fuel cells and low emission vehicles.

Reduction Potentials for NiMH

	E° (V)		E° (V)
$NiO(OH) + H_2O + e^> Ni(OH)_2 + OH^-$	1.32	2H+ + 2e- —> H ₂	0.000
$M(s) + H_2O + e^- \longrightarrow MH + OH^-$	0.0	2H ₂ O + 2e ⁻ > H ₂ + 2 OH ⁻	-0.83
		K+ + e- —> K	-2.95

Electrolysis

Chapter 18- Materials

Get a little piece of the copper wire that is being passed around. Don't do anything to it until I tell you to.

- Metals
 - —refining/smelting –Alloys –physical properties
- Ceramics
 - –Clay –making ceramics –physical properties
- Semiconductors
 - -Band theory -doping -photovoltaics
- Polymers
 - -cellulosic -proteins
 - -properties from inter- and intra-molecular interactions
 - -condensation vs addition polymers

06_06.jpg

18_05.jpg