Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- Next exam on Chapters 13 and 14 one week from Today.
- Sample Exam 2 has been posted on web site in the Study Aids section.
- You should have received an e-mail with the suggested Chapter 15 reading. We will probably get an introduction to that material today.

Review

Pseudo-order (Swamping) method

 Uses large excess of all but one reactant, so concentration of only the limiting reactant (A) changes significantly.

$$- -d[A]/dt = (k[B]_o^b)[A]^a \approx k_{app}[A]^a$$

-
$$0^{th}$$
 order a = 0: $[A]_t = [A]_o - k_{app}t$

-
$$1^{st}$$
 order a = 1: [A]_t = [A]_oexp{- k_{app} t}

- Linear:
$$ln[A]_t = ln[A]_o - k_{app}t$$

$$-2^{nd}$$
 order a = 2: $1/[A]_t = 1/[A]_o + kt$

Can determine k and b by varying [B]_o

$$- lnk_{app} = lnk + bln[B]_{o}$$

In[A]

Review: Reaction Mechanisms

- Elementary Steps
 - Unimolecular: A --> P
 - Rate Law: -d[A]/dt=d[P]/dt = k[A]
 - Bimolecular: A + B --> P
 - Rate Law: -d[A]/dt = d[B]/dt = d[P]/dt = k[A][B]
 - Also 2 A --> P has rate law -d[A]/dt = k[A]²
- Mechanism consists of sequence of elementary steps.
 - Rate limiting or rate determining steps (overall rate is determined by slow step)
 - Steady state approximation (an intermediate product concentration stays the same during the reaction)

$$ln(k(T)) = lnA - (E_a/R) (1/T)$$

Heterogeneous Catalysis (Catalytic Converter)