Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

Review (Chp 13)

Catabolism

- Carbohydrates, Proteins, Lipids converted to pyruvate then to Acetyl CoA which passes into Krebs Cycle where CO₂ and H₂O are produced along with ADP --> ATP
- Example of glycolysis: steps with $\Delta G > 0$ driven by coupling to ATP + H₂O --> ADP + HPO₄²⁻, where $\Delta G < 0$
- Can tell whether process stores energy for organism by counting number of ATP --> ADP vs ADP --> ATP.

DNA (deoxyribonucleic acid)

- Sugar backbone
- Bases on each sugar forms a double helix with bases pairing by H-bonding (A—T and C—G)
- DNA transcribed to mRNA (decoded by ribosomes to make proteins)

Review (Chp 14)

- Kinetics is the study of the time variation of concentrations in systems of chemical reactions.
- Example: smog shows variation of which species are present versus time.
- Example: A ---> 2 B + C
 - Average rate = R = $(1/2)\Delta[B]/\Delta t = \Delta[C]/\Delta t = -\Delta[A]/\Delta t$
 - Instantaneous rate is the slope of the concentration versus time curve at a particular time (slope of tangent).

$$2 \text{ NO(g)} + O_2(g) \longrightarrow 2 \text{ NO}_2(g)$$

Initial Rate Data for RXN: A + B + C --> X

$(d[X]/dt)_{o}$	[A] _o	[B] _o	[C] _o
1.0 M/s	10.0	10.0	0.01
4.0 M/s	10.0	10.0	0.02
16.0 M/s	10.0	10.0	0.04
2.0 M/s	20.0	10.0	0.01
4.0 M/s	40.0	10.0	0.01
1.0 M/s	10.0	100.0	0.01