Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- Kinetics lab handout is available in the lab handout section of the class web site.
- Quiz will be just on Chapter 13. None of the Chapter 14 material covered today will be on it.

Review

- Calculating ΔG
 - From ΔH^{o}_{f} and S^o. $\Delta G = \Delta H_{sys} T\Delta S_{sys}$
 - From ΔG_{f}° , $\Delta G_{RXN}^{\circ} = \Sigma \Delta G_{f}^{\circ}(\text{prod}) \Sigma \Delta G_{f}^{\circ}(\text{reac})$
 - ΔG < spontaneous, ΔG > 0 nonspontaneous
- Carbohydrates, Proteins, Lipids
 - Carbohydrates = starch, cellulose & sugars
 - Proteins made of chains of α -amino acids coupled by condensation reactions to form peptide bonds:

Review

- Stereoisomerism of proteins
 - 4 different groups on C make a chiral center.
 - Called stereoisomers of enantiomers.

- Lipids
 - Fatty acids bound to glycerol in a condensation reaction.

- Saturated have no double bonds in chains
- Unsaturated have double bonds in chains

Review Results of Food Value Calculations

	Fuel Value (kJ/g)	Food Value (Cal/g)
glucose (carbohydrate)	15.5	3.716
Alanine (amino acid)	18.20	4.351
Tristerin (common saturated lipid)	42.35	10.12
CH ₃ CH ₂ OH (ethanol)	26.8	6.4

Catabolism

Figure 13.19

DNA (figure 13.20)

Chapter 14- Kinetics and Air Pollution

- Smog
- Reaction Rates
- Concentration effects (reaction order, rate laws, rate constant, initial rate method, pseudo-order method, integrated rate laws)
- Reaction Mechanisms (elementary steps, molecularity, rate-determining steps, steady-state assumption).
- Temperature effects (activation energy, Arrhenius equation, transition state)
- Catalysis (homogeneous, heterogeneous).

Smog

Changes in concentration versus time are the result of competing chemical reactions.

 $\bullet N_2(g) + O_2(g)$ -hot metal surfaces-> 2 NO(g)

•2 NO(g) + $O_2(g) \rightarrow 2 NO_2(g) \Delta G < 0$, brown...

•NO₂(g) + hv --> NO(g) + O(g)

• $O_2(g) + O(g) --> O_3(g) \Delta G < 0$

$2 NO(g) + O_2(g) ---> 2 NO_2(g)$

Figure 14.4