Announcements

- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

- Kinetics lab handout is available in the lab handout section of the class web site.
- Will be starting Chp. 14 next Tuesday.

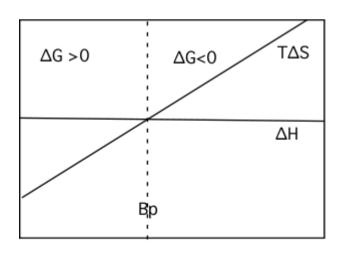
Review

- Enthalpies of Solution
 - Contributions: ΔH_{ionic}>0, ΔH_{H-bonds}>0, ΔH_{ion-dipole}<0
 - $\Delta H_{ionic} = -U$ (lattice energy) $\Delta H_{H-bonds} + \Delta H_{ion-dipole} = \Delta H_{hyd}$
 - $_{-}$ $\Delta H_{soln} = \Delta H_{hvd} + \Delta H_{ionic}$, overall sign depends on balance.
- S quantifies the disorder of a system
 - larger S means more disorder
 - Spontaneous processes: $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} > 0$
 - $-\Delta S_{sys} \approx \Delta S_{rxn}^{o} = \Sigma S_{prod}^{o} \Sigma S_{reac}^{o}$
- $\Delta G = \Delta H_{sys} T\Delta S_{sys}$ is easier to use than ΔS_{univ}
 - ΔG <0 = spontaneous, ΔG > 0 non-spontaneous (exergonic) (endergonic)

Review

• $\Delta G = \Delta H - T\Delta S$

 $-\Delta H < 0$, $\Delta S > 0$ $\Delta G < 0$ always spor


 $-\Delta H < 0$, $\Delta S < 0$ ΔG ?

 $-\Delta H > 0$, $\Delta S < 0$ $\Delta G > 0$

 $-\Delta H > 0$, $\Delta S > 0$ ΔG ?

always spontaneous
spontaneous at low T
never spontaneous
spontaneous at high T

Water near its boiling point is example of the last case.

Calculating ∆G

- From ΔH°_{f} and S°
 - Calculate ΔH° and ΔS° , then use in $\Delta G = \Delta H T \Delta S$
 - Ex: NaCl(s) + $H_2O(l)$ ---> Na+(aq) + Cl⁻(aq) + $H_2O(l)$

S^o(J·mol⁻¹K⁻¹) 72.1 70.0 59.0 56.5 70.0

 ΔH_{f}^{0} (kJ·mol⁻¹) -411.2 -285.8 -240.1 -167.2 -285.8

 $\Delta S^{\circ}_{RXN} = 43.4 \text{ J/K}$ $\Delta H^{\circ}_{RXN} = 3.9 \text{ kJ}$

 $\Delta G^{\circ}_{BXN} = 3.9 \times 10^{3} \text{ J} - (298 \text{ K})(43.4 \text{ J/K}) = -9.0 \times 10^{3} \text{ J}$

Calculating ∆G

- From ∆G°_f
 - $-\Delta G^{\circ}_{RXN} = \Sigma \Delta G^{\circ}_{f}(prod) \Sigma \Delta G^{\circ}_{f}(reac)$
 - Note: like ΔH°_{f} , for elements in their standard state $\Delta G^{\circ}_{f}=0$
- Ex: NaCl(s) + $H_2O(l)$ ---> Na+(aq) + $Cl^-(aq)$ + $H_2O(l)$
- $\Delta G^{\circ}_{f}(kJ \cdot mol^{-1})$ -384.2 -237.2 -261.9 -131.2 -237.2
- $\Delta G^{\circ}_{RXN} = (1 \text{mol Cl}^{-})(-131.2 \text{ kJ/mol}) + (1 \text{mol Na}^{+})(-261.9 \text{ kJ/mol})$
 - -(1mol NaCl)(-384.2 kJ/mol) = -8.9 kJ

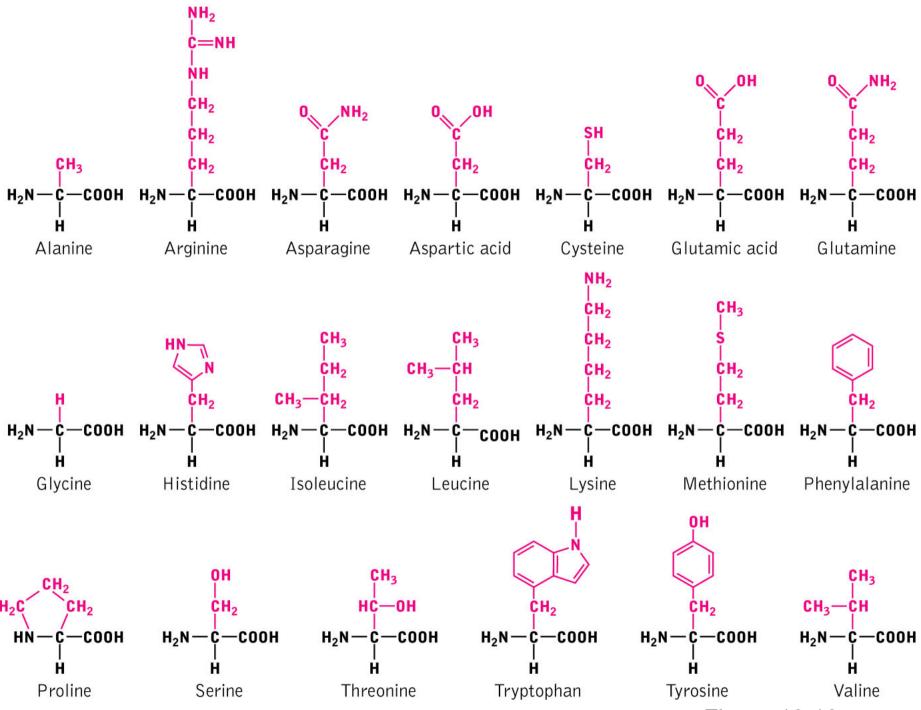
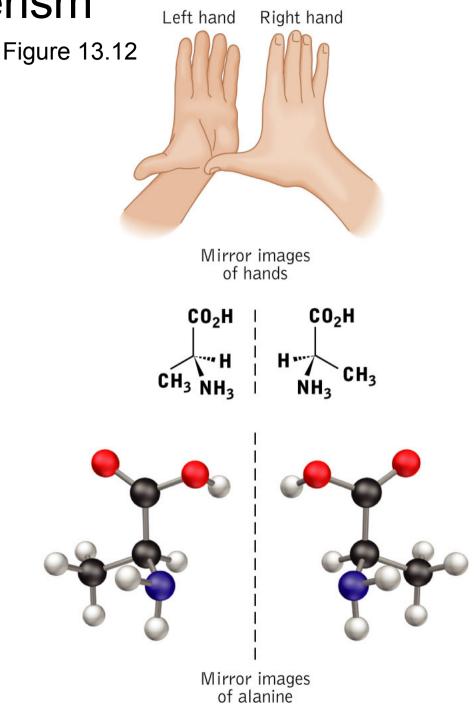



Figure 13.10

Stereoisomerism

- Four (4) <u>different</u> groups attached to a single carbon can be arranged in two different ways that are mirror images of each other.
- The two forms are called enantiomers or stereoisomers.
- A carbon with 4 different groups around it is called a chiral center.
- Most enzymes in our bodies only work with one enantiomer.

Results of Food Value Calculations

	Fuel Value (kJ/g)	Food Value (Cal/g)
glucose (carbohydrate)	15.5	3.716
Alanine (amino acid)	18.20	4.351
Tristerin (common saturated lipid)	42.35	10.12
CH ₃ CH ₂ OH (ethanol)	26.8	6.4