Energy

•Capacity to do work = Force•distance or E = F•d (Units: N•m = J)

•Law of conservation of energy: Energy cannot be created or destroyed. It can only be converted from one form to another.

•Types of Energy:

- Kinetic Energy = energy of motion
- Potential Energy = energy of position (also chemical)
- Electromagnetic Energy (light)

•Thermochemistry = study of energy in chemical reactions

Potential Energy Reaction Pathway Diagrams

Naming "Normal" Alkanes (1-4)

# C	# H	Formula	Name
1	4	CH_4	Methane
2	6	$H_3CCH_3 (C_2H_6)$	Ethane
3	8	H ₃ CCH ₂ CH ₃	Propane
4	10	H ₃ CCH ₂ CH ₂ CH ₃	Butane

Naming "Normal" Alkanes (>4)

Named systematically using Greek prefixes:

Greek Prefix for # of C + -ane

# C	Prefix	
5	Penta-	
6	Hexa-	
7	Hepta-	
8	Octa-	
9	Nona-	
10	Deca-	

Example: $H_3CCH_2CH_2CH_2CH_2CH_2CH_3$ = heptane

Alkane Subunits & General Formula

- Subunits:
 - -CH₂- : methylene group
 - -CH₃ : methyl group
- General Formula: C_nH_{2n+2}