Summary of Intermolecular Interactions

attractive interactions among molecules:

- Solute Types
 - Electrolytes dissolve in water to produce electrically conducting solutions.
 - Usually salts
 (ionic compounds) Chang Fig 4.2
 - + and ions are separately solvated
 - Non-electrolytes dissolve in water to produce nonconductive solutions.
 - Molecular compounds
 - Dissolve poorly if not polar.
- Liquids that mix are called miscible, those that don't immiscible.

- % by mass or % w/w
 - -=(100%)(mass solute)/(mass of sol'n)
- ppm = parts per million
 - $= (10^6 \text{ppm})(\text{mass solute})/(\text{mass of sol'n})$
 - Equivalent to (mg solute)/(kg sol'n)
- ppb = parts per billion
 - $-=(10^9ppb)$ (mass of solute)/(mass of sol'n)
- ppt = parts per trillion
 - $-=(10^{12} \text{ ppt})(\text{mass of solute})/(\text{mass of sol'n})$
- M = molarity
 - mol solute/L sol'n

- Molarity = moles solute/L of solution
- Conversion between M and w/w units
 - moles solute → g solute using molar mass
 - Convert L sol'n → g sol'n using density of sol'n
- Solubility vocabulary (soluble, insoluble, saturated, unsaturated, supersaturated, miscible, immiscible).
- Alkane nomenclature (special names 1-4 C, Greek prefixes for > 5 C. end in -ane).

Naming "Normal" Alkanes (1-4)

# C	# H	Formula	Name
1	4	CH_4	Methane
2	6	H_3CCH_3 (C_2H_6)	Ethane
3	8	H ₃ CCH ₂ CH ₃	Propane
4	10	H ₃ CCH ₂ CH ₂ CH ₃	Butane

Naming "Normal" Alkanes (>4)

Named systematically using Greek prefixes:

Greek Prefix for # of C + -ane

# C	Prefix	
5	Penta-	
6	Hexa-	
7	Hepta-	
8	Octa-	
9	Nona-	
10	Deca-	

Example: H₃CCH₂CH₂CH₂CH₂CH₂CH₃ = heptane

Alkane Subunits & General Formula

- Subunits:
 - -CH₂-: methylene group
 - -CH₃: methyl group
- General Formula: C_nH_{2n+2}

- Energy = capacity to do work
 - Standard units = $J = kg \cdot m^2 s^{-2}$
 - Energy is conserved.
 - Forms (potential, kinetic, electromagnetic)
- Thermochemistry = study of energy in chemical reactions.
 - System = what we are care about (at minimum all reactants and products).
 - If energy comes out (is produced) the process is exothermic and q <0.
 - If energy goes in (is used) the process is endothermic (q > 0).

- Pressure volume work: $w = -P\Delta V$. Take care with sign (work done on surroundings or by system is negative, work done on system is positive.)
- Internal Energy $\Delta E = q + w$ (energy is conserved).
- Enthalpy (ΔH) is easier to keep track of because under constant P conditions $\Delta H = q$ (or sometimes q_p , to indicate constant pressure).
- $q = C_p \Delta T$, $C_p = constant$ pressure heat capacity of sample $(C_p = nc_p, c_p = molar$ heat capacity or $C_p = ms$, m = mass, s = specific heat).
- Constant pressure/solution Calorimetry
 - _ Key relationship: $0 = \Delta H_{RXN} + C\Delta T => \Delta H_{RXN} = C\Delta T$

- Bond energies to calculate ΔH_{RXN}
 - Breaking bonds requires putting energy in (+) (Don't forget to multiply # bonds in molecule by stoichiometric coefficients)
 - Making bonds releases energy (-) (Remember stoichiometric coefficients)
 - $-\Delta H_{RXN} = \Delta H_{break} + \Delta H_{make}$
- ΔH_{f}^{o} to calculate ΔH_{RXN}
 - Key relationship: $\Delta H^{\circ}_{RXN} = \sum \Delta H^{\circ}_{f}(prod) \sum \Delta H^{\circ}_{f}(react)$
- Fuel Values: kJ/g, kJ/mL and CO₂ intensity (mol/kJ)
- Hess's Law: $\Delta H(A\rightarrow C) = \Delta H(A\rightarrow B) + \Delta H(B\rightarrow C)$