Announcements

- To join clicker to class today (Clickers with LCD display joins automatically):
- Turn on the Clicker (the red LED comes on).
- Push // oin/ button followed by //20//
 followed by the //S end/ button (switches
 to flashing green LED if successful).
- Now hiring students to prep for general chemistry next Fall.
 See Ms. Hauer in HS-449
- Even if the weather is nice do not forget to wear appropriate clothing to lab! Calorimetry lab involves caustics that will eat your skin!
- Exam scores are posted. Let me know about problems by next Tuesday.

Review

- Enthalpies of Solution Contributions:
 - $-\Delta H_{\text{ionic}} > 0$, $\Delta H_{\text{H-bonds}} > 0$, $\Delta H_{\text{ion-dipole}} < 0$
 - $-\Delta H_{\text{ionic}} + \Delta H_{\text{H-bonds}} + \Delta H_{\text{ion-dipole}} = \Delta H_{\text{Soln}}$
 - overall sign depends on balance.
- Entropy (S) quantifies dissorder
 - $-\Delta S_{univ} > 0$ for spontaneous processes
 - So even processes where $\Delta H > 0$ can occur if $\Delta S_{univ} > 0$

Second Law of Thermodynamics

- A process is spontaneous only if the entropy of the universe increases during the process.
- Entropy is times arrow, as time moves forward entropy increases.
- Spontaneous Process: $\Delta S_{\text{univ}} > 0$
- Non-spontaneous Process $\Delta S_{univ} < 0$
- $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$
- $\Delta S_{sys} \approx \Delta S_{rxn}^o = \Sigma S_{prod}^o \Sigma S_{reac}^o$
 - S(perfect crystal at 0 K) = 0
 - So is relative to this perfect crystal
 - NOTE: So (element in standard state) $\neq 0$
- $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = \Delta S_{sys} \Delta H_{sys}/T$

ΔG – Free Energy

- $\Delta G_{sys} = -T\Delta S_{univ} = \Delta H_{sys} T\Delta S_{sys}$
- Interpretation of G:
 - $-\Delta G < 0$ spontaneous
 - $-\Delta G > 0$ nonspontaneous
 - $-\Delta G = 0$ equilibrium
- Calculating ΔG
 - $_{-}$ From $\Delta H^{\circ}_{\ f}$ and S°. ΔG = ΔH_{sys} $T\Delta S_{sys}$

Calculating ΔG

- From ΔH_{f}^{o} and S^{o}
 - Calculate ΔH^{o} and ΔS^{o} , then use in $\Delta G = \Delta H T \Delta S$

- Ex:
$$NaCl(s) + H_2O(l) ---> Na^+(aq) + Cl^-(aq) + H_2O(l)$$

$$S^{\circ}(J \cdot mol^{-1}K^{-1})$$
 72.1 70.0 59.0 56.5 70.0 $\Delta H^{\circ}_{f}(kJ \cdot mol^{-1})$ -411.2 -285.8 -240.1 -167.2 -285.8 $\Delta S^{\circ}_{rxn} = 43.4 \text{ J/K}$ $\Delta H^{\circ}_{rxn} = 3.9 \text{ kJ}$

$$\Delta G^{\circ}_{rxn} = 3.9 \times 10^3 \text{ J} - (298 \text{ K})(43.4 \text{ J/K}) = -9.0 \times 10^3 \text{ J}$$

Calculating ΔG

- From ΔG^{o}_{f}
 - $-\Delta G^{o}_{RXN} = \Sigma \Delta G^{o}_{f}(prod) \Sigma \Delta G^{o}_{f}(reac)$
 - Note: like ΔH_f^o , for elements in their standard state $\Delta G_f^o = 0$
- Ex: NaCl(s) + H₂O(l) ---> Na⁺(aq) + Cl⁻(aq) + H₂O(l) $\Delta G^{o}_{f}(kJ \cdot mol^{-1})$ -384.2 -237.2 -261.9 -131.2 -237.2 $\Delta G^{o}_{RXN} = (1mol Cl^{-})(-131.2 kJ/mol) + (1mol Na^{+})(-261.9 kJ/mol)$ -(1mol NaCl)(-384.2 kJ/mol) = -8.9 kJ

Kinetics

- Reaction Rates
- Concentration effects
 - reaction orderrate laws

- rate constant
- Determining rate laws (initial rate method)
- Temperature effects

 - activation energy
 Arrhenius equation
 - transition state
- Catalysis
 - Homogeneous

-heterogeneous

Reaction Rates

- Reaction Rates. Example: 2 NO + O₂ -> 2 NO₂
 - Rates of change for each species:
 - $\Delta [NO]/\Delta t$ $\Delta [O_2]/\Delta t$

- $\Delta[NO_2]/\Delta t$
- Note: $(1/2)\Delta[NO]/\Delta t = \Delta[O_2]/\Delta t = (-1/2)\Delta[NO_2]/\Delta t$
- Formal rate of reaction:
 - R = $|(1/\text{stoichometric coefficient})\Delta[X]/\Delta t|$, X = any species in the reaction.
 - Example: $R = -(1/2)\Delta[NO]/\Delta t = -\Delta[O_2]/\Delta t =$ $(1/2)\Delta[NO_2]/\Delta t$

 $R = (1/2)\Delta[NO_2]/\Delta t = rise/run (2000-4000 s) \approx (1/2)(0.0054 - 0.0042 M)/(4000-2000 s)$ = 3.0 x 10⁻⁷ Ms⁻¹

Initial Rate Data for RXN: $A + B + C \longrightarrow X$

$(\Delta[X]/\Delta t)$	[A] _o	[B] _o	[C] _o	
1.0 M/s	10.0	10.0	0.01	
4.0 M/s	10.0	10.0	0.02	
16.0 M/s	10.0	10.0	0.04	
2.0 M/s	20.0	<mark>10.0</mark>	0.01	
4.0 M/s	40.0	10.0	0.01	
1.0 M/s	10.0	100.0	0.01	

T dependence of

$${
m NO} + {
m O}_3 \longrightarrow {
m NO}_2 + {
m O}_2$$
T (K) K (M-1s-1) In k 1/T (K-1)
300 1.21E10 23.22 0.00333
325 1.67E10 23.54 0.00308
350 2.20E10 23.81 0.00286
375 2.79E10 24.05 0.00267
400 3.45E10 24.26 0.00250
425 4.15E10 24.45 0.00235

$$ln(k(T)) = lnA - (E_a/R) (1/T)$$

