Announcements - To join clicker to class today (Clickers with LCD display joins automatically): - Turn on the Clicker (the red LED comes on). - Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful). - Exam scores posted on D2L - Please report errors by next Wednesday. - Even if the weather is nice do not forget to wear appropriate clothing to lab! #### Review - Solute Types - Electrolytes dissolve in water to produce electrically conducting solutions. - Usually salts (ionic compounds) Chang Fig 4.2 - + and ions are separately solvated - Non-electrolytes dissolve in water to produce nonconductive solutions. - Molecular compounds - Dissolve poorly if not polar. - Liquids that mix are called miscible, those that don't immiscible. #### Review - % by mass or % w/w - -=(100%)(mass solute)/(mass of sol'n) - ppm = parts per million - $= (10^6 ppm)(mass solute)/(mass of sol'n)$ - Equivalent to (mg solute)/(kg sol'n) - ppb = parts per billion - $-=(10^9ppb)$ (mass of solute)/(mass of sol'n) - ppt = parts per trillion - $-=(10^{12} \text{ ppt})(\text{mass of solute})/(\text{mass of sol'n})$ - M = molarity - mol solute/L sol'n ## How we use Molarity - Ex: Suppose we want to react 1.0 x 10⁻⁵ moles of CaCO₃ (~2 mg) in the following reaction: - $H_2SO_4(aq)+CaCO_3(s) \longrightarrow CaSO_4(aq) + H_2O + CO_2(g)$ - Converts CaCO₃ into CaSO₄, which is slightly water soluble. - How acid rain damages buildings. - Have a 4.5 x 10⁻⁵ M solution - How many mL of solution do we need? ## Converting between mg/kg and M - Molarity of CHCl₃ (residual from disinfection) in drinking water? - $-2 \mu g/kg$ - MM(CHCl₃)= 119.38 g/mol - $-D(H_2O@25 °C)=0.996 g/mL$ mg CHCl₃/kg sol'n --> mol CHCl₃/kg sol'n-->mol CHCl₃/g sol'n --> mol CHCl₃/mL sol'n-->mol CHCl₃/L sol'n # Concentration Unit Conversions - What is the ppb of Cl⁻ in a 0.050 M CaCl₂ solution? - Solution density = 0.995 g/mL - $MM(Ca^{+}) = 40.08 g/mol$ - $-MM(Cl^{-}) = 35.45 g/mol$ ## Solubilities (M) | | F- | CI- | NO^{3-} | SO ₄ ²⁻ | CO ₃ ²⁻ | S ²⁻ | OH- | |------------------|--------------------|--------------------|-----------|-------------------------------|-------------------------------|---------------------|---------------------------------| | Na⁺ | 1 | 6 | 10 | 1 | 2 | 2 | 11 | | Mg^{2+} | 2x10 ⁻³ | 6 | 5 | 3 | 9x10 ⁻⁶ | RXN | 3x10 ⁻⁵ | | Al 3+ | 8x10 ⁻² | 3 | 8 | 1 | - | RXN | 3x10 ⁻⁴ | | K ⁺ | 16 | 5 | 3 | 6x10 ⁻¹ | 11 | high | 19 | | Ca ²⁺ | 3x10 ⁻⁴ | 3 | 5 | 4x10 ⁻³ | 9x10 ⁻⁵ | 3x10 ⁻³ | 2x10 ⁻² | | Fe ²⁺ | - | 5 | 5 | 2 | 7x10 ⁻⁶ | 1x10 ⁻⁹ | 1x10 ⁻⁵ | | Cu^{2+} | low | 5 | 7 | 1 | 1x10 ⁻⁵ | 1x10 ⁻¹⁸ | ³ 6x10 ⁻⁷ | | Ag⁺ | 14 | 1x10 ⁻⁵ | 13 | 4x10 ⁻² | 2x10 ⁻⁴ | 2x10 ⁻¹⁷ | 71x10 ⁻⁹ | | Pb ²⁺ | 3x10 ⁻³ | 1x10 ⁻² | 2 | 1x10 ⁻⁴ | 4x10 ⁻⁷ | 1x10 ⁻¹² | ¹ 2x10 ⁻⁵ | Soluble, slightly soluble, insoluble ## Solubility Vocabulary - Unsaturated solution = a solution which can still dissolve more of the solute. - Saturated solution = a solution in which no more solute can dissolve (solid stays on the bottom). - Super saturated solution = a solution which temporarily has more solute in it than it can hold. A sudden shock can cause it to come out of solution.