Announcements

- To join clicker to class today (Clickers with LCD display joins automatically):
- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).
- Exam scores posted on D2L
- Please report errors by next Wednesday.
- Even if the weather is nice do not forget to wear appropriate clothing to lab!

Review

- Solute Types
 - Electrolytes dissolve in water to produce electrically conducting solutions.
 - Usually salts
 (ionic compounds) Chang Fig 4.2
 - + and ions are separately solvated
 - Non-electrolytes dissolve in water to produce nonconductive solutions.
 - Molecular compounds
 - Dissolve poorly if not polar.
- Liquids that mix are called miscible, those that don't immiscible.

Review

- % by mass or % w/w
 - -=(100%)(mass solute)/(mass of sol'n)
- ppm = parts per million
 - $= (10^6 ppm)(mass solute)/(mass of sol'n)$
 - Equivalent to (mg solute)/(kg sol'n)
- ppb = parts per billion
 - $-=(10^9ppb)$ (mass of solute)/(mass of sol'n)
- ppt = parts per trillion
 - $-=(10^{12} \text{ ppt})(\text{mass of solute})/(\text{mass of sol'n})$
- M = molarity
 - mol solute/L sol'n

How we use Molarity

- Ex: Suppose we want to react 1.0 x 10⁻⁵ moles of CaCO₃ (~2 mg) in the following reaction:
 - $H_2SO_4(aq)+CaCO_3(s) \longrightarrow CaSO_4(aq) + H_2O + CO_2(g)$
 - Converts CaCO₃ into CaSO₄, which is slightly water soluble.
 - How acid rain damages buildings.
 - Have a 4.5 x 10⁻⁵ M solution
 - How many mL of solution do we need?

Converting between mg/kg and M

- Molarity of CHCl₃ (residual from disinfection) in drinking water?
 - $-2 \mu g/kg$
 - MM(CHCl₃)= 119.38 g/mol
 - $-D(H_2O@25 °C)=0.996 g/mL$

mg CHCl₃/kg sol'n --> mol CHCl₃/kg sol'n-->mol CHCl₃/g sol'n

--> mol CHCl₃/mL sol'n-->mol CHCl₃/L sol'n

Concentration Unit Conversions

- What is the ppb of Cl⁻ in a 0.050 M CaCl₂ solution?
 - Solution density = 0.995 g/mL
 - $MM(Ca^{+}) = 40.08 g/mol$
 - $-MM(Cl^{-}) = 35.45 g/mol$

Solubilities (M)

	F-	CI-	NO^{3-}	SO ₄ ²⁻	CO ₃ ²⁻	S ²⁻	OH-
Na⁺	1	6	10	1	2	2	11
Mg^{2+}	2x10 ⁻³	6	5	3	9x10 ⁻⁶	RXN	3x10 ⁻⁵
Al 3+	8x10 ⁻²	3	8	1	-	RXN	3x10 ⁻⁴
K ⁺	16	5	3	6x10 ⁻¹	11	high	19
Ca ²⁺	3x10 ⁻⁴	3	5	4x10 ⁻³	9x10 ⁻⁵	3x10 ⁻³	2x10 ⁻²
Fe ²⁺	-	5	5	2	7x10 ⁻⁶	1x10 ⁻⁹	1x10 ⁻⁵
Cu^{2+}	low	5	7	1	1x10 ⁻⁵	1x10 ⁻¹⁸	³ 6x10 ⁻⁷
Ag⁺	14	1x10 ⁻⁵	13	4x10 ⁻²	2x10 ⁻⁴	2x10 ⁻¹⁷	71x10 ⁻⁹
Pb ²⁺	3x10 ⁻³	1x10 ⁻²	2	1x10 ⁻⁴	4x10 ⁻⁷	1x10 ⁻¹²	¹ 2x10 ⁻⁵

Soluble, slightly soluble, insoluble

Solubility Vocabulary

- Unsaturated solution = a solution which can still dissolve more of the solute.
- Saturated solution = a solution in which no more solute can dissolve (solid stays on the bottom).
- Super saturated solution = a solution which temporarily has more solute in it than it can hold. A sudden shock can cause it to come out of solution.