D. 3.0×10^{10}

1. Which one of the following salts will form a neutral solution on dissolving in water? B. NH₄NO₃ D. KNO₂ A. NaCN C. NaCl E. FeCl₃ 2. Which one of the following is a buffer solution? A. 0.10 M KCN B. 0.40 M HCN and 0.10 KCN C. 0.20 M CH₃COOH D. 1.0 M HNO3 and 1.0 M NaNO3 E. 0.50 M HCl and 0.10 NaCl 3. Suppression of the solubility of one ion by the addition of an excess of the counter-ion in its insoluble salt is called the: A. common-ion effect B. ionic suppression effect C. counter-ion effect D. excession effect E. precipitation effect 4. The solubility of lead(II) iodide is 0.064 g/100 mL at 20°C. What is the solubility product for lead(II) iodide? A. 2.7 x 10⁻¹² B. 1.4 x 10⁻³ C. 1.1 x 10⁻¹¹ D. 1.1 x 10⁻⁸ E. 3.9 x 10⁻⁶ 5. A solution of NaOH (25.00 mL) was titrated to completion with 30.55 mL of 0.1020 M HCl. What was the concentration of the sodium hydroxide? A. 0.08347 M B. 11.98 M C. 0.04174 M D. 0.1246 M E. 0.2493 M 6. Calculate the pH of a buffer solution prepared by dissolving 0.20 mole of cyanic acid (HCNO) and 0.80 mole of sodium cyanate (NaCNO) in enough water to make 1.0 liter of solution. $[K_a(HCNO) = 2.0 \times 10^{-4}]$ C. 4.30 E. 3.10 A. 3.70 B. 0.97 D. 4.40 7. The OH⁻ concentration in a 7.5 x 10^{-3} M Ca(OH)₂ solution is A. 1.3 x 10⁻¹² M. B. 1.0 x 10⁻⁷ M. C. 1.0 x 10⁻¹⁴ M. D. 1.5 x 10⁻² M. E. 7.5 x 10⁻³ M. 8. Acetylsalic acid (aspirin) is a weak acid with a $K_a = 3.0 \times 10^{-4}$. What is K_b of the conjugate base of aspirin? A. 3.0 x 10⁻¹⁸ B. 3.3×10^3 C. 3.3 x 10⁻¹¹

E. 3.3×10^{17}

Chemistry 106 Fall 2007 Exam 3

Form B

- 9. The stronger the acid,
 - A. the more concentrated the acid.
 - B. the weaker its conjugate base.
 - C. the stronger its conjugate base.
 - D. the less concentrated the conjugate base.
 - E. none of the above
- 10. Calculate the concentration of oxalate ion $(C_2O_4^{2-})$ in a 0.175 M solution of oxalic acid $(C_2H_2O_4).$

[For oxalic acid, $K_{a1} = 6.5 \times 10^{-2}$, $K_{a2} = 6.1 \times 10^{-5}$.]

- A. 0.0791 M
- B. 6.1 x 10⁻⁵ M
- C. 0.175 M
- D. 4.0 x 10⁻⁶ M
- E. 0.11 M
- 11. A 0.14 M HNO_2 solution is 5.7% ionized. Calculate the H⁺ ion concentration.
 - A. 0.057 M

B. 0.13 M

C. 0.14 M

D. 0.80 M

- E. $8.0 \times 10^{-3} \text{ M}$
- 12. Calculate the pH of a $3.5 \times 10^{-3} \text{ M HNO}_3$ solution.
 - A. 3.00
- B. -2.46
- C. 2.46
- D. 3.46
- E. 0.54

- 13. A solution with a pOH of 4.3 has a [H+] of
 - A. 4.8×10^{-5} M. B. 6.8×10^{-9} M. C. 3.2×10^{-4} M. D. 2.1×10^{-10} M.

- E. 9.7
- 14. Arrange the acids HOBr, HBrO₃, and HBrO₂ in order of increasing acid strength.
 - A. $HBrO_3 < HBrO_2 < HOBr$
 - B. HBrO₂ < HOBr < HBrO₃
 - C. $HOBr < HBrO_2 < HBrO_3$
 - D. $HBrO_3 < HOBr < HBrO_2$
 - E. HOBr < HBrO₃ < HBrO₂

15. In the following reaction, which species is the Lewis acid?

$$Cu^{2+} + NH_3 \longrightarrow [Cu(NH_3)]^{2+}$$

A. Cu²⁺

B. NH₃

C. $[Cu(NH_3)]^{2+}$

- D. None of these is an acid.
- 16. In the following reaction, which is the acid reactant and its conjugate base product?

$$CH_3NH_2 + HSO_4^- \longrightarrow CH_3NH_3^+ + SO_4^{2-}$$

A. HSO₄- and SO₄2-

B. CH₃NH₂ and SO₄²-

C. CH₃NH₂ and CH₃NH₃+

- D. HSO₄- and CH₃NH₃+
- E. none of these pairs is correct.
- 17. Pure water establishes an equilibrium of
 - A. OH- and H₃O+ ions in solution.
 - B. H₂O and OH₂ molecules in solution.
 - C. O^{2-} and H_4O^{2+} ions in solution.
 - D. O^{2-} , OH^- , H_2O , H_3O^+ , and H_4O^{2+} ions in solution.
 - $E.\ H_2$ and O_2 molecules in solution.
- 18. Which of the following is a true statement about chemical equilibria in general?
 - A. Equilibrium is the result of the cessation of all chemical change.
 - B. There is only one set of equilibrium concentrations that equals the Kc value.
 - C. At equilibrium, the rate of the forward reaction is equal to as the rate of the reverse reaction.
 - D. At equilibrium, the rate constant of the forward reaction is equal to the rate constant for the reverse reaction.
 - E. At equilibrium the total concentration of products equals the total concentration of reactants, that is, [products] = [reactants].
- 19. On analysis, an equilibrium mixture for the reaction $2H_2S(g) \Leftrightarrow 2H_2(g) + S_2(g)$ was found to contain 1.0 mol H_2S , 4.0 mol H_2 , and 0.80 mol H_2S in a 4.0 L vessel. Calculate the equilibrium constant, H_2S , for this reaction.
 - A. 0.8
- B. 0.64
- C. 1.6
- D. 12.8
- E. 3.2

- 20. The equilibrium constant for the reaction $Ni(s) + 4CO(g) \Leftrightarrow Ni(CO)_4(g)$ is 5.0 x 10^4 at 25°C. What is the equilibrium constant for the reaction $Ni(CO)_4(g) \Leftrightarrow Ni(s) + 4CO(g)$?
 - A. 5.0 x 10⁻⁴ D. 2.5 x 10⁹
- B. 5.0×10^4
- $C = 2.0 \times 10^{-5}$

- D. 2.5×10^9
- $E = 2.0 \times 10^{-3}$
- 21. An equilibrium that strongly favors products has
 - A. a value of Q<<1.
 - B. a value of Q>>1.
 - C. a high rate.
 - D. a value of K << 1.
 - E. a value of $K \gg 1$.
- 22. For the reaction $H_2(g) + I_2(g) \Leftrightarrow 2HI(g), K_c = 50.2$ at 445° C. If $[H_2] = [I_2] = [HI] =$ $1.75 \times 10^{-3} M$ at 445°C, which one of the following statements is true?
 - A. The concentrations of H₂ and I₂ will increase as the system approaches equilibrium.
 - B. The system is at equilibrium, thus no concentration changes will occur.
 - C. The concentrations of HI and I₂ will increase as the system approaches equilibrium.
 - D. The concentration of HI will increase as the system approaches equilibrium.
 - E. The concentrations of H₂ and HI will fall as the system moves toward equilibrium.
- 23. At 35°C, the equilibrium constant for the reaction 2NOCl(g) \Leftrightarrow 2NO(g) + Cl₂(g) is $K_c =$ 1.6 x 10⁻⁵. An equilibrium mixture was found to have the following concentrations of Cl₂ and NOCl: $[Cl_2] = 1.2 \times 10^{-2} \text{ M}$; $[NOCl] = 2.8 \times 10^{-1} \text{ M}$. Calculate the concentration of NO(g) at equilibrium.
 - A. $1.0 \times 10^{-4} \text{ M}$
 - B. 2.8 x 10⁻¹ M
 - C. $1.6 \times 10^{-3} \text{ M}$
 - D. 2.4 x 10⁻² M
 - E. $1.0 \times 10^{-2} \text{ M}$
- 24. For the following reaction at equilibrium, which one of the changes below would cause the equilibrium to shift to the left?

 $2NOBr(g) \leftrightarrow 2NO(g) + Br_2(g), \Delta H^{\circ}_{rxn} = 30 \text{ kJ/mol}$

- A. Increase the container volume.
- B. Remove some Br₂.
- C. Decrease the temperature.
- D. Remove some NO.

E. Add more NOBr.

25. Consider the following gas phase equilibrium system:

 $PCl_5(g) \leftrightarrow PCl_3(g) + Cl_2(g)$ $\Delta H^{\circ}_{rxn} = +87.8 \text{ kJ/mol.}$

Which of the following statements is false?

- A. Increasing the temperature causes the equilibrium constant to increase.
- B. A catalyst speeds up the approach to equilibrium and shifts the position of equilibrium to the right.
- C. Decreasing the total pressure of the system shifts the equilibrium to the right.
- D. Increasing the temperature shifts the equilibrium to the right.
- E. Increasing the system volume shifts the equilibrium to the right.
- 26. A chemical equilibrium may be established by
 - A. starting a reaction with products only.
 - B. starting a reaction with a greater amount of products than reactants.
 - C. starting a reaction with reactants only.
 - D. starting a reaction with equal quantities of reactants and products.
 - E. all the above
- 27. At 250°C, the equilibrium constant Kp for the reaction $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$ is 1.80. Sufficient PCl_5 is put into a reaction vessel to give an initial pressure of 2.74 atm at 250°C. Calculate the pressure of PCl_5 after the system has reached equilibrium.
 - A. 1.50 atm
 - B. 4.24 atm
 - C. 1.24 atm
 - D. 0.94 atm
 - E. 1.12 atm
- 28. The reaction $2SO_3(g) \leftrightarrow 2SO_2(g) + O_2(g)$ is endothermic. If the temperature is increased,
 - A. K_c will increase.
 - B. no change will occur in K_c .
 - C. the pressure will decrease.
 - D. K_c will decrease.
 - E. more SO₃ will be produced.
- 29. In which of the following gas-phase equilibria is the yield of products increased by increasing the total pressure on the reaction mixture?
 - A. $2SO_3(g) \Leftrightarrow 2SO_2(g) + O_2(g)$
 - B. $PCl_5(g) \Leftrightarrow PCl_3(g) + Cl_2(g)$
 - C. $CO(g) + H_2O(g) \Leftrightarrow CO_2(g) + H_2(g)$
 - D. $2NO(g) + Cl_2(g) \Leftrightarrow 2NOCl(g)$

- 30. Which is the correct equilibrium constant expression for the following reaction? $Fe_2O_3(s) + 3H_2(g) \Leftrightarrow 2Fe(s) + 3H_2O(g)$
 - A. $K_c = [Fe_2O_3] [H_2]^3 / ([Fe]^2[H_2O]^3)$
 - B. $K_c = [Fe]2[H_2O]^3 / ([Fe_2O_3] [H_2]^3)$
 - C. $K_c = [H_2]/[H_2O]$
 - D. $K_c = [Fe] [H_2O] / ([Fe_2O_3] [H_2])$
 - E. $K_c = [H_2O]^3 / [H_2]^3$
- 31. Determine the equilibrium constant (K_p) at 25°C for the reaction $CO(g) + H_2O(g) \Leftrightarrow CO_2(g) + H_2(g)$. $\Delta G^{\circ} = -28.5 \text{ kJ}$.
 - A. 2.9 x 10-60
- B. 3.4 x 10⁵⁹
- C. 1.2

- D. 1.0 x 10⁻⁴
- $E = 1.0 \times 10^{5}$
- 32. At 1500°C the equilibrium constant for the reaction $CO(g) + 2H_2(g) \Leftrightarrow CH_3OH(g)$ has the value $K_p = 1.4 \times 10^{-7}$. Calculate ΔG° for this reaction at 1500°C.
 - A. 1.07 kJ/mol
- B. 105 kJ/mol
- C. 233 kJ/mol

- D. -105 kJ/mol
- E. -233 kJ/mol
- 33. Calculate K_p assuming pressure is measured in atmospheres for the reaction $2NOCl(g) \Leftrightarrow 2NO(g) + Cl_2(g)$ at $400^{\circ}C$ if K_c at $400^{\circ}C$ for this reaction is 2.1×10^{-2} .
 - A. 2.1 x 10⁻²
- B. 1.7 x 10⁻³
- C. 0.70

D. 1.2

E. 3.8 x 10⁻⁴

Answer Key for Test "Exam 3 F07 Form B.mte", 11/9/07

No. in	No. on	
Q-Bank	Test	Correct Answer
16 122	1	C
16 123	2	В
16 95	3	A
16 126	4	D
16 125	5	A
16 124	6	C
16 118	7	D
16 121	8	C
16 52	9	В
16 120	10	B
16 119	11	E
16 116	12	C
16 48	13	D
16 117	14	C
16 31	15	A
16 33	16	A
16 39	17	A
15 118	18	C
15 119	19	E
15 122	20	C
15 17	21	E
15 121	22	D
15 120	23	E
15 126	24	C
15 127	25	B
15 22	26	B
15 130	27	C
15 129	28	A
15 128	29	D
15 117	30	E
15 125	31	E
15 124	32	C
15 123	33	D