Announcements

To join clicker to class today (Clickers with LCD display joins automatically):

- Turn on the Clicker (the red LED comes on).
- Push // oin/ button followed by /20/ followed by the /S end/ button (switches to flashing green LED if successful).
- Now hiring students to prep for general chemistry next Fall.
 See Ms. Hauer in HS-449
- Even if the weather is nice do not forget to wear appropriate clothing to lab! Calorimetry lab involves caustics that will eat your skin!
- Exam scores may be delayed as a computer error requires scoring by hand.
- Quiz tomorrow on ΔH .

Review

- ΔH^{o}_{f} to calculate ΔH_{RXN}
 - Key relationship: $\Delta H^{\circ}_{RXN} = \sum \Delta H^{\circ}_{f}(prod) \sum \Delta H^{\circ}_{f}(react)$
- Fuel Values:
 - -kJ/g
 - kJ/mL
 - CO₂ intensity (mol/kJ)
- Hess's Law: $\Delta H(A \rightarrow C) = \Delta H(A \rightarrow B) + \Delta H(B \rightarrow C)$

Entropy & Free Energy

- Enthalpies of Solution ($\Delta H_{sol'n}$, ΔH_{ionic} , $\Delta H_{H-bonds}$, $\Delta H_{ion-dipole}$)
- Entropy (S, Δ S, spontaneity)
- Free Energy (ΔG , spontaneity)

Contributions to $\Delta H_{sol'n}$ of NaCl

Process of dissolving salt	Label	ΔH
1) Ionic crystal lattice to separate solvated ions	ΔH_{ionic}	> 0
2) Breaking H-bonds	$\Delta H_{\text{H-bond}}$	> 0
3) Water reorganizes to solvate ions	$\Delta H_{i \alpha}$ -dipole	< 0
Sum	$\Delta H_{\text{sol'n}}$	> 0

Entropy versus Temperature and Phase

Chang Fig. 18.6

Second Law of Thermodynamics

- A process is spontaneous only if the entropy of the universe increases during the process.
- Entropy is times arrow, as time moves forward entropy increases.
- Spontaneous Process: $\Delta S_{univ} > 0$
- Non-spontaneous Process $\Delta S_{univ} < 0$
- $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr}$.
- $\Delta S_{sys} \approx \Delta S_{rxn}^{o} = \Sigma S_{prod}^{o} \Sigma S_{reac}^{o}$

- S(perfect crystal at 0 K) = 0

– S° is relative to this perfect crystal

Possible combinations of ΔS_{sys} and ΔS_{surr}

- $\Delta S_{univ} = \Delta S_{sys} + \Delta S_{surr} = \Delta S_{sys} \Delta H_{sys}/T$ $-\Delta S_{surr} = -\Delta H_{sys}/T$, because $\Delta H < 0$ heats surroundings
 - 1/T factor because at high T same ΔH (q) causes less fractional change in entropy (disorder).
- $\Delta H < 0$, $\Delta S_{sys} > 0$ $\Delta S_{univ} > 0$ always spontaneous • $\Delta H < 0$, $\Delta S_{sys} < 0$ $\Delta S_{univ} = ?$ spontaneous at low T • $\Delta H > 0$, $\Delta S_{sys} < 0$ $\Delta S_{univ} < 0$ never spontaneous
- $\Delta H > 0$, $\Delta S_{sys} > 0$ $\Delta S_{univ} = ?$ spontaneous at high T

ΔG – Free Energy

- $\Delta G_{sys} = -T\Delta S_{univ} = \Delta H_{sys} T\Delta S_{sys}$
- Usually drop "sys" subscripts: $\Delta G = \Delta H T\Delta S$
- Interpretation of G:
 - $-\Delta G < 0$ spontaneous
 - $-\Delta G > 0$ nonspontaneous
 - $-\Delta G = 0$ equilibrium

Calculating ΔG

• From ΔH^{o}_{f} and S^{o}

– Calculate ΔH° and ΔS° , then use in $\Delta G = \Delta H - T \Delta S$

- Ex: NaCl(s) + H₂O(l) ---> Na⁺(aq) + Cl⁻(aq) + H₂O(l)

S°(J•mol⁻¹K⁻¹) 72.1 70.0 59.0 56.5 70.0 $\Delta H^{o}_{f} (kJ•mol^{-1}) -411.2 -285.8 -240.1 -167.2 -285.8$ $\Delta S^{o}_{rxn} = 43.4 \text{ J/K} \qquad \Delta H^{o}_{rxn} = 3.9 \text{ kJ}$

 $\Delta G_{rxn}^{o} = 3.9 \text{ x } 10^3 \text{ J} - (298 \text{ K})(43.4 \text{ J/K}) = -9.0 \text{ x } 10^3 \text{ J}$