Announcements

- To join clicker to class today (Clickers with LCD display join automatically):
- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "S end" button (switches to flashing green LED if successful).
- Exam 2 next Monday. Sample exam and review sheets are updated.
- Discussion quiz today on material from shapes of orbitals through today's material molar mass (last thing we did Monday).
- D2L is now accepting grade updates from me.

Review

- Naming binary compounds, oxoacids, halogen acids, and hydrates of ionic compounds.
 - CO: carbon monoxide $-SO_3$: sulfur trioxide
 - $CaCl_2$: calcium chloride $-Mn_2O_3$: manganese (III) oxide
 - Na₂HPO₄: sodium hydrogen phosphate
 - H_3PO_4 : phosphoric acid HF: hydrofluoric acid
 - CuSO₄•2H₂O: copper (II) sulfate dihydrate
- Calculating molar mass (ex. H_2O).
 - 1 mol contains 6.022 x 10²³ things (called Avogadro's #, symbol N_A). Can also be thought of as amu/g.
 (2 mol H/mol H₂O)(1.00794 g H/mol H) = 2.01588 g H/mol H₂O +(1 mol O/mol H₂O)(15.9994 gO/mol O)=15.9995 g O/mol H₂O
 18.0153 g H₂O/mol

Avogadro's Number and Molar Mass

• $N_A = 6.022 \times 10^{23}$ particles/mole (also number of

- Ex: suppose you have 24.022 g SO₃ how many O atoms? Info: 80.064 g SO₃/mol SO₃ or MM(SO₃)= 80.064 g/mol
 - atoms O = $(24.022 \text{ g SO}_3)(1 \text{ mol SO}_3/80.064 \text{ g SO}_3) \text{ x}$ $(30/SO_3)(6.022 \text{ x } 10^{23} \text{ mol}^{-1}) = 5.420 \text{ x } 10^{23} \text{ O atoms}$

Steps to Balance Chemical Equations

- 1. Write correct molecular formula (empirical formula if ionic) for reactants and product (reactants on left, products on right).
- 2. Start with the heaviest atom other than O or H and balance those. Note: it is best to start with atoms that appear in only one compound on each side.
- 3. After doing all the other atoms balance O, then H.
- 4. HINT: ALWAYS CHECK THAT CHEMICAL EQUATIONS ARE BALANCED.
 - EXCEPTION: ON EXAMS IF YOU ARE TOLD THAT AN EQUATION IS BALANCED YOU MAY ASSUME IT IS.

Stoichiometry/Mole Map

Stoichiometry

- Can answer questions like: How much SO₃ necessary to produce the 3.959 x 10^{10} kg of H₂SO₄ manufactured in 2000?
- Produced using same RXN as occurred in early atmosphere: SO₃(g) + H₂O(I) ---> H₂SO₄(aq) (balanced).
- Key info
 - $80.064 \text{ g SO}_3/\text{mol SO}_3 \text{ or } \mathcal{M}(SO_3) = 80.064 \text{ g/mol}$
 - 98.079 g H₂SO₄/mol H₂SO₄ or \mathcal{M} (H₂SO₄)= 98.079 g/mol
- Route to solution (know amount of A want amount of B): mass of A -{÷m(A)}-> moles of A -{mole ratio}-> moles B -{xm(B)}-> mass B