Announcements

- To join clicker to class today (Clickers with LCD display join automatically):
- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).
- Discussion Quiz Today covers through Osmosis/Osmotic Pressure in Monday's Lecture.

 Will be starting next section on bonding Friday. Suggested reading and problems will be posted and e-mailed out.

Review

- Colligative properties depend on the concentration of solute particles.
 - Example 1: Osmosis
 - Osmotic pressure $\prod = iMRT$.
 - i= van't Hoff factor.
 - Example 2: Bp elevation $\Delta T_{b} = imK_{b}$
 - uses concentration units of molality (mol/kg solvent).
 - practiced conversion between M and *m*.
 - account for difference between mass of solvent and mass of solution
 - Mass solution includes mass of solute.

Boiling Point Elevation Calculation.

- Relation: $\Delta T_{b} = imK_{b}$
- Ex. How much higher is Bp of 0.500 m NaCl than pure water?

$$- K_{b}(H_{2}O) = 0.5121 \text{ K or }^{\circ}C/m$$

Freezing Point Depression

- Same idea as Bp elevation except that solute gets in the way of solid formation and lowers the freezing point.
- Observed relation is: $\Delta T_f = imK_f$
 - Note that K_f is usually reported as positive
 - ΔT comes out positive.
 - You must subtract a positive ΔT from the freezing point of the pure solvent since the freezing point drops.
- Other types of calculations you could do.
 - How much CaCl₂ do you need in some amount of water to drop the freezing point 10 °C?
 - What molarity CaCl₂ sol'n is necessary?
 - Account for the van't Hoff factor.

Molar Mass from ⊓, Bp or Fp

- We know: $\Pi = iMRT$, $\Delta T_{b} = imK_{b}\Delta T_{f} = imK_{f}$
 - Each of these can be solved for iM or im
 - For molecular compounds i= 1 => get concentration.
- Consider Π, where we get molarity.
 - $-M = \Pi/(RT) = Y$ moles solute/L sol'n
 - Ex. Given 6.50 g solute/L sol'n and Π = 1.6 atm, find molar mass.
- For Bp and Fp get molality => need g solute/kg solv.

Acid-Base Reactions

- $H^{+}(aq) + OH^{-}(aq) -> H_{2}O$
 - This is the net ionic equation.
 - Full equation might be:

- HCl(aq) + NaOH(aq) - H₂O + NaCl(aq)

- Also called acid-base neutralization reactions.
- Acids = compounds that release H⁺ in water.
- Bases = compounds that release OH⁻ in water.
- Common acids you should know: HCI, HNO₃, H_2SO_4 , H_3PO_4 .
- Bases: M(OH), where n = charge on metal ion represented by M.

How acid rain dissolves limestone

 $H_2SO_4(aq) + CaCO_3(s) \longrightarrow CaSO_4(aq \& s) + H_2O + CO_2(g)$

One pathway in the process is:

- CaCO₃(s) + H₂O —> Ca²⁺(aq) + CO₃²⁻(aq) (slightly soluble)
- $Ca^{2+} + CO_3^{2-} + H_2O \longrightarrow Ca^{2+} + OH^{-}(aq) + HCO_3^{-}(aq)$
- $H_2SO_4(aq) + OH^-(aq) + HCO_3^-(aq) \longrightarrow H_2O + SO_4^{-2}(aq) + H_2CO_3(aq)$
- H₂CO₃(aq) (not very stable)—> H⁺(aq) + CO₂(g)+ OH⁻(aq) —> H₂O + CO₂
- Don't need to be able to reproduce, but should recognize the acid-base neutralization steps (red).