Announcements

- To join clicker to class today (Clickers with LCD display join automatically):
- Turn on the Clicker (the red LED comes on).
- Push "Join" button followed by "20" followed by the "Send" button (switches to flashing green LED if successful).

Review

- % yield = 100%*(amount collected/amount expected).
- Limiting reagents: what's used up first in a reaction.
- What's in the water? Units are mass of solute per mass of solution.

What's Dissolved in the Water? (a small selection)

Solute	Lake Water	Drinking Water	Deionized Water
	(ppm)	(ppm)	(ppm)
Ca ²⁺ (makes water hard)	~160 mg/kg	~160 mg/kg	~0 mg/kg
Na⁺	~10 mg/kg	~10 mg/kg	~0 mg/kg
Ni ²⁺	~4 mg/kg	~4 mg/kg	~0 mg/kg
O ₂	~9 mg/kg	~9 mg/kg	~9 mg/kg
SO ₄ ²⁻	~25 mg/kg	~31 mg/kg	~0 mg/kg
F- (for teeth)	~0 mg/kg	~1 mg/kg	~0 mg/kg
CHCl ₃ (disinfection by product)	~0 mg/kg	~0.002 mg/kg (~ 2 µg/kg)	~0 mg/kg

ppm, ppb, ppt units

- ppm = parts per million
 - =(10⁶ppm)(mass solute)/(mass of sol'n)
 - Equivalent to (mg solute)/(kg sol'n)
- ppb = parts per billion
 - =(10⁹ppb)(mass of solute)/(mass of sol'n)
- ppt = parts per trillion
 - =(10¹² ppt)(mass of solute)/(mass of sol'n)

Molarity

- Molarity (M) = (moles of solute)/(L sol'n)
- Ex: What is the molarity of the solution made from 35. g of NaCl to make 170 mL of solution.
 - -MM(NaCl) = 22.990 + 35.453 = 58.443 g/mole

How we use Molarity

- Ex: Suppose we want to react 1.0 x 10⁻⁵ moles of CaCO₃ (~2 mg) in the following reaction:
 - $H_2SO_4(aq)+CaCO_3(s) \longrightarrow CaSO_4(aq) + H_2O + CO_2(g)$
 - Converts CaCO₃ into CaSO₄, which is slightly water soluble.
 - How acid rain damages buildings and why limestone would not have lasted near surface of early Earth.
 - Have a 4.5 x 10⁻⁵ M solution
 - How many mL of solution do we need?

Converting between mg/kg and M

- Molarity of CHCl₃ (residual from disinfection) in drinking water?
 - $-2 \mu g/kg$
 - MM(CHCl₃)= 119.38 g/mol
 - $-D(H_2O@25 °C)=0.996 g/mL$

mg CHCl₃/kg sol'n --> mol CHCl₃/kg sol'n-->mol CHCl₃/g sol'n

--> mol CHCl₃/mL sol'n-->mol CHCl₃/L sol'n

Concentration Unit Conversions

- What is the ppb of Cl⁻ in a 0.050 M CaCl₂ solution?
 - Solution density = 0.995 g/mL
 - $MM(Ca^{+}) = 40.08 g/mol$
 - $-MM(CI^{-}) = 35.45 g/mol$