Announcements

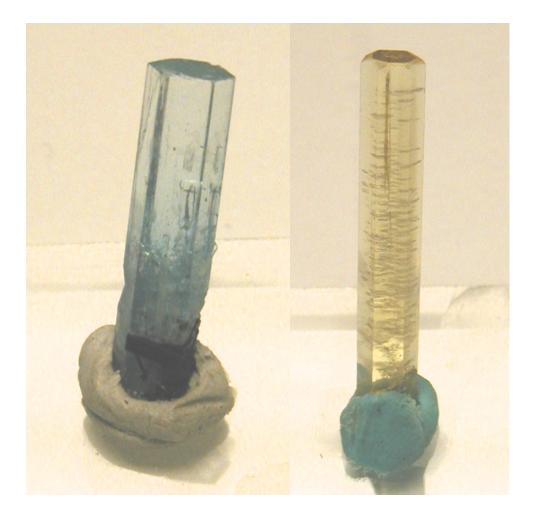
- To join clicker to class today (Clickers with LCD display join automatically):
- Turn on the Clicker (the red LED comes on).
- Push // oin/ button followed by //20/ followed by the //S end/ button (switches to flashing green LED if successful).

- Exam Friday.
- As usual, please wait to be let into classroom.

- Analytical reasoning quiz in discussion.
 - Sort and interpret data.
 - Use unfamiliar mathematical expression.
 - Reason by analogy.
 - Is one model preferred?

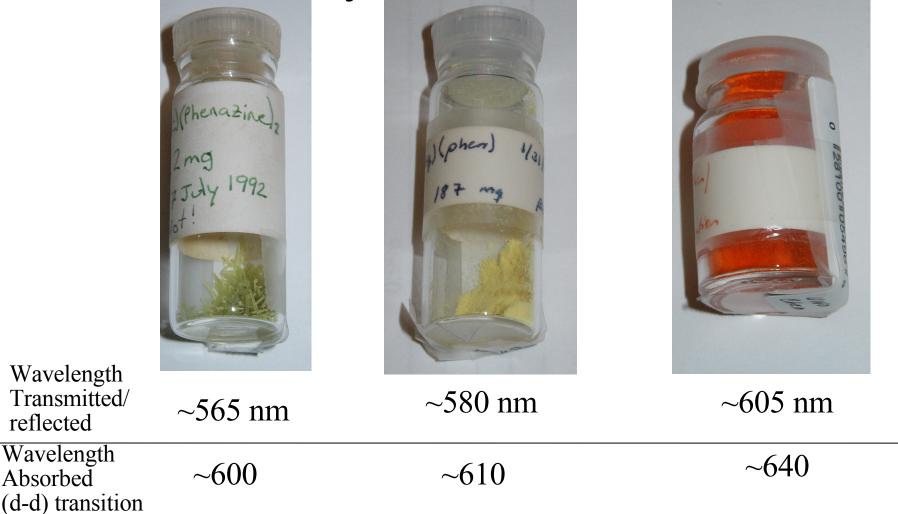
- Common arrangements of silica tetrahedra in silicates:
 - Isolated (-4 per Si) chains/rings (-2 per Si)
 - double chains (-1.5 per Si)
 - Sheets (-1 per Si) Networks
- Amorphous substance are disordered at the molecular level. Ex. glass.
- Color of most minerals due to localized transitions on transition metal ions.
 - d-orbital energy levels split by ligands.
 - Octahedral and tetrahedral environments.

Chang Figure 20.11


Crystal Field Splitting in Octahedral Complexes

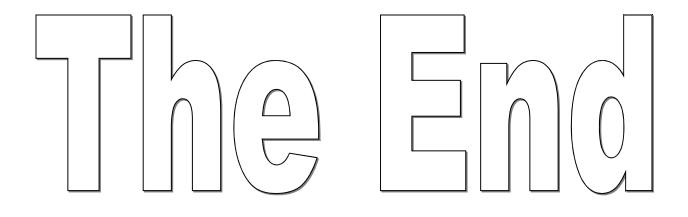
Chang Figure 20.12

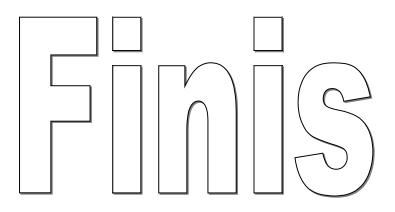
Crystal Field Splitting in Tetrahedral Complexes

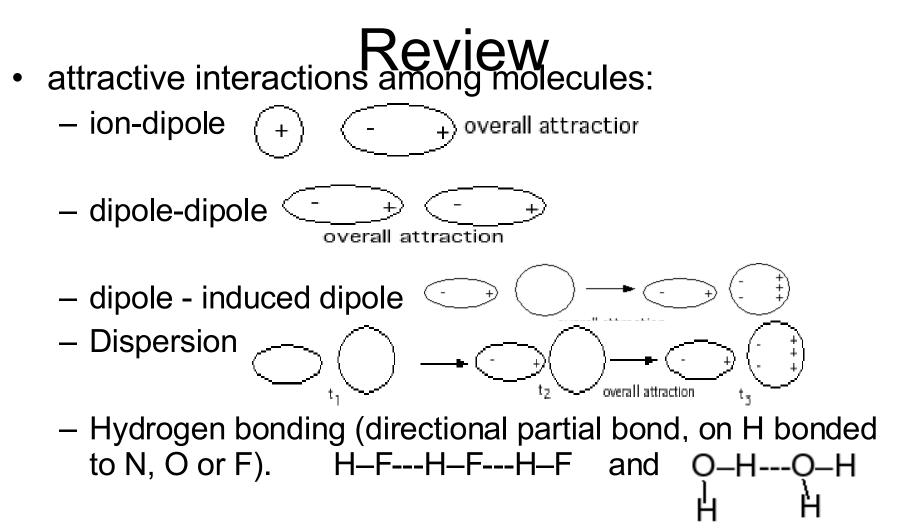

Chang Figure 20.18

Be₃Al_{2-x}(Cr, Fe)_xSi₆O₁₈

Absorbance of Emeralds

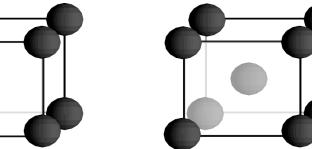

Zn²⁺ tetrahedral complexes Courtesy of Dr. Wacholtz

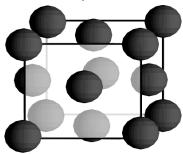



(note the ligands absorb in the UV to blue range 350-400 nm

High Spin vs. Low Spin

Chang Figure 20.17




• Attractions explain properties of liquids (surface tension, meniscus, capillary action).

- Attractions explain properties of liquids (surface tension, meniscus, capillary action, viscosity).
- Properties of liquids determined by intermolecular interactions.
- Ion-ion interactions and Lattice energy: $U=k(q_1q_2/d)$
 - U is energy per mole of formula units (e.g. mole of NaCl or CaCl₂, etc)
 - k = a constant that accounts for geometry and the factor of N_A
- Solubility of ionic compounds depends on the balance between the energy released by solvation (hydration) of ions and the energy necessary separate the ions.

- For molecular compounds "like dissolves like".
- Vocabulary:
 - miscible means the liquids are soluble in each other.
 - Immiscible means the liquids do not mix.
- Reading phase diagrams (normal boiling point, T_{trip}, T_c, phase boundaries)
 - Most solids more dense than liquid (s-I boundary positive slope)
 - On boundaries both phases can exist.
- Raoult's Law: $P_{vap} = X_{solvent} P^{\circ}_{solvent}$

- X-ray diffraction (small lattice spacing larger diffraction angles).
- Crystalline solids (scc, bcc and fcc lattices)

Simple Cubic Body Centered Cubic Face Centered Cubic – Volumes of different lattices in terms of radius of atoms:

- V_{cubic} = 8r³, $V_{bcc} = (4/\sqrt{3})^3 r^3$ $V_{fcc} = (16\sqrt{2})r^3$
 - Calculated densities using this information.
 - Other things you can calculate (practice problems in text): Use density and unit cell size to get # of atoms per unit cell and ID type of unit cell. Unit cell type and density to get unit cell dimensions.

- In ionic lattices the positive ion fits into the holes between the negative ions.
 - In fcc there are both octahedral and tetrahedral holes.
 - Octahedral bigger (hold cations of > 50% size of anions).
 - Tetrahedral smaller (hold cations <40-50% size of anions).
 - If ions about same size tend to form scc (bcc) crystals.
- When calculating density of ionic crystal need to account for number of both types of ions in the unit cell.

- Molecular solids = individual molecules held together by intermolecular interactions (sometimes crystalline/well ordered).
- Allotrope = different forms of same element (graphite, C_{60} and diamond).
- Models of metallic bonding
 - Electron sea (Jellium) model.
 - Band theory of solids (also explains semiconductors and insulators).
- Network solids = rigid array of bonded atoms. (diamond and silicates are examples).

- Common arrangements of silica tetrahedra in silicates:
 - Isolated (-4 per Si) chains/rings (-2 per Si)
 - double chains (-1.5 per Si)
 - Sheets (-1 per Si) Networks
- Amorphous substance are disordered at the molecular level. Ex. glass.
- Color of most minerals due to localized transitions on transition metal ions.
 - d-orbital energy levels split by ligands.
 - Octahedral and tetrahedral environments.
 - High spin versus, low spin configurations.