## Announcements

- To join clicker to class today (Clickers with LCD display join automatically):
- Turn on the Clicker (the red LED comes on).
- Push /J oin/ button followed by /20/ followed by the /S end/ button (switches to flashing green LED if successful).

- Exam Friday.
- Lab does not meet this week.

- Analytical reasoning quiz in discussion.
  - Sort and interpret data.
  - Use unfamiliar mathematical expression.
  - Reason by analogy.
  - Is one model preferred?

# Review

- In ionic lattices the positive ion fits into the holes between the negative ions.
  - In fcc there are both octahedral and tetrahedral holes.
  - Octahedral bigger (hold cations of > 50% size of anions).
  - Tetrahedral smaller (hold cations <40-50% size of anions).</li>
  - If ions about same size tend to form scc (bcc) crystals.
- When calculating density of ionic crystal need to account for number of both types of ions in the unit cell.

# Review

- Molecular solids = individual molecules held together by intermolecular interactions (sometimes crystalline/well ordered).
- Allotrope = different forms of same element (graphite, C<sub>60</sub> and diamond).
- Models of metallic bonding
  - Electron sea (Jellium) model.
  - Band theory of solids (also explains semiconductors and insulators).
- Network solids = rigid array of bonded atoms. (diamond and silicates are examples).



# See Vision Learning Web Site (Minerals III) for better figures.

# Some Silicate Gemstones courtesy of Dr. Wacholtz



#### Chang Figure 20.11

Crystal Field Splitting in Octahedral Complexes

Chang Figure 20.12

## Crystal Field Splitting in Tetrahedral Complexes

Chang Figure 20.18

### Tourmalines

#### (Na,Ca)(Mg, Fe, AI, Mn, Li)<sub>3</sub>Al<sub>6</sub>(BO<sub>3</sub>)<sub>3</sub>(Si<sub>6</sub>O<sub>18</sub>)(OH,F)<sub>4</sub>



### Beryls Be<sub>3</sub>Al<sub>2-x</sub>(Cr, Fe)<sub>x</sub>Si<sub>6</sub>O<sub>18</sub>



### Absorbance of Emeralds